Search results for: radial network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2941

Search results for: radial network

2911 Group Invariant Solutions for Radial Jet Having Finite Fluid Velocity at Orifice

Authors: I. Naeem, R. Naz

Abstract:

The group invariant solution for Prandtl-s boundary layer equations for an incompressible fluid governing the flow in radial free, wall and liquid jets having finite fluid velocity at the orifice are investigated. For each jet a symmetry is associated with the conserved vector that was used to derive the conserved quantity for the jet elsewhere. This symmetry is then used to construct the group invariant solution for the third-order partial differential equation for the stream function. The general form of the group invariant solution for radial jet flows is derived. The general form of group invariant solution and the general form of the similarity solution which was obtained elsewhere are the same.

Keywords: Two-dimensional jets, radial jets, group invariant solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
2910 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

Authors: Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2909 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
2908 Real-time Laser Monitoring based on Pipe Detective Operation

Authors: Mongkorn Klingajay, Tawatchai Jitson

Abstract:

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
2907 A Simple Approach of Three phase Distribution System Modeling for Power Flow Calculations

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

This paper presents a simple three phase power flow method for solution of three-phase unbalanced radial distribution system (RDN) with voltage dependent loads. It solves a simple algebraic recursive expression of voltage magnitude, and all the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily understood. Mutual coupling between the phases has been included in the mathematical model. The proposed algorithm has been tested with several unbalanced radial distribution networks and the results are presented in the article. 8- bus and IEEE 13 bus unbalanced radial distribution system results are in agreements with the literature and show that the proposed model is valid and reliable.

Keywords: radial distribution networks, load flow, circuitmodel, three-phase four-wire, unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3938
2906 Distributed Generator Placement and Sizing in Unbalanced Radial Distribution System

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

To minimize power losses, it is important to determine the location and size of local generators to be placed in unbalanced power distribution systems. On account of some inherent features of unbalanced distribution systems, such as radial structure, large number of nodes, a wide range of X/R ratios, the conventional techniques developed for the transmission systems generally fail on the determination of optimum size and location of distributed generators (DGs). This paper presents a simple method for investigating the problem of contemporaneously choosing best location and size of DG in three-phase unbalanced radial distribution system (URDS) for power loss minimization and to improve the voltage profile of the system. Best location of the DG is determined by using voltage index analysis and size of DG is computed by variational technique algorithm according to available standard size of DGs. This paper presents the results of simulations for 25-bus and IEEE 37- bus Unbalanced Radial Distribution system.

Keywords: Distributed generator, unbalanced radial distributionsystem, voltage index analysis, variational algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3691
2905 Forming the Differential-Algebraic Model of Radial Power Systems for Simulation of both Transient and Steady-State Conditions

Authors: Saleh A. Al-Jufout

Abstract:

This paper presents a procedure of forming the mathematical model of radial electric power systems for simulation of both transient and steady-state conditions. The research idea has been based on nodal voltages technique and on differentiation of Kirchhoff's current law (KCL) applied to each non-reference node of the radial system, the result of which the nodal voltages has been calculated by solving a system of algebraic equations. Currents of the electric power system components have been determined by solving their respective differential equations. Transforming the three-phase coordinate system into Cartesian coordinate system in the model decreased the overall number of equations by one third. The use of Cartesian coordinate system does not ignore the DC component during transient conditions, but restricts the model's implementation for symmetrical modes of operation only. An example of the input data for a four-bus radial electric power system has been calculated.

Keywords: Mathematical Modelling, Radial Power System, Steady-State, Transients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
2904 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2903 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3622
2902 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
2901 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2900 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
2899 Internal Loading Distribution in Statically Loaded Ball Bearings, Subjected to a Combined Radial and Thrust Load, Including the Effects of Temperature and Fit

Authors: Mário C. Ricci

Abstract:

A new, rapidly convergent, numerical procedure for internal loading distribution computation in statically loaded, singlerow, angular-contact ball bearings, subjected to a known combined radial and thrust load, which must be applied so that to avoid tilting between inner and outer rings, is used to find the load distribution differences between a loaded unfitted bearing at room temperature, and the same loaded bearing with interference fits that might experience radial temperature gradients between inner and outer rings. For each step of the procedure it is required the iterative solution of Z + 2 simultaneous nonlinear equations – where Z is the number of the balls – to yield exact solution for axial and radial deflections, and contact angles.

Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method, Temperature, Fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
2898 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
2897 RBF Based Face Recognition and Expression Analysis

Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar

Abstract:

Facial recognition and expression analysis is rapidly becoming an area of intense interest in computer science and humancomputer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper skin and non-skin pixels were separated. Face regions were extracted from the detected skin regions. Facial expressions are analyzed from facial images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to identify the person and to classify the facial expressions. Our method reliably works even with faces, which carry heavy expressions.

Keywords: Face Recognition, Radial Basis Function, Gabor Wavelet Transform, Discrete Cosine Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
2896 Productive Design and Calculation of Intermittent Mechanisms with Radial Parallel Cams

Authors: Pavel Dostrašil, Petr Jirásko

Abstract:

The paper deals with the kinematics and automated calculation of intermittent mechanisms with radial cams. Currently, electronic cams are increasingly applied in the drives of working link mechanisms. Despite a huge advantage of electronic cams in their reprogrammability or instantaneous change of displacement diagrams, conventional cam mechanisms have an irreplaceable role in production and handling machines. With high frequency of working cycle periods, the dynamic load of the proper servomotor rotor increases and efficiency of electronic cams strongly decreases. Though conventional intermittent mechanisms with radial cams are representatives of fixed automation, they have distinct advantages in their high speed (high dynamics), positional accuracy and relatively easy manufacture. We try to remove the disadvantage of firm displacement diagram by reducing costs for simple design and automated calculation that leads reliably to high-quality and inexpensive manufacture.

Keywords: Cam mechanism, displacement diagram, intermittentmechanism, radial parallel cam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
2895 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, Prediction, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174
2894 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
2893 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
2892 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
2891 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
2890 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata

Abstract:

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
2889 Angular-Coordinate Driven Radial Tree Drawing

Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov

Abstract:

We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.

Keywords: Radial Tree Drawing, Real-Time Visualization, Angular Coordinates, Large Trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
2888 Steady State Analysis of Distribution System with Wind Generation Uncertainity

Authors: Zakir Husain, Neem Sagar, Neeraj Gupta

Abstract:

Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.

Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
2887 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
2886 Optimal Placement of DG in Distribution System to Mitigate Power Quality Disturbances

Authors: G.V.K Murthy, S. Sivanagaraju, S. Satyanarayana, B. Hanumantha Rao

Abstract:

Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.

Keywords: Distributed generation, artificial bee colony method, loss reduction, radial distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
2885 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
2884 Research on Regional Energy Saving Potential Based on Nonparametric Radial Adjustment and Slack Adjustment

Authors: Donglan Zha, Ning Ding

Abstract:

Taking the provincial capital, labor and energy as inputs, regional GDP as output from 1995 to 2007, the paper quantifies the vertical and lateral energy saving potential by introducing the radial adjustment and slack adjustment of DEA. The results show that by the vertical, the achievement of energy saving in 2007 is better than their respective historical performances. By horizontal, in 2007 it can be found that Tianjin, Liaoning, Shanghai and Yunnan do better in energy saving than other provinces. In national wide, the higher of energy efficiency, the larger of per capita GDP and the proportion of the tertiary industry in the national economy, the more open to the outside, the lower the energy saving potential demonstrates, while the energy endowment has negative effect on energy saving potential.

Keywords: radial adjustment; slack adjustment; regional disparity; energy saving potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
2883 RBF modeling of Incipient Motion of Plane Sand Bed Channels

Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao

Abstract:

To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.

Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
2882 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384