Search results for: micro sensors.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1118

Search results for: micro sensors.

938 Correlation between Heat Treatment, Microstructure and Properties of Trip-Assisted Steels

Authors: A. Talapatra, N. R. Bandhyopadhyay, J. Datta

Abstract:

In the present study, two TRIP-assisted steels were designated as A (having no Cr and Cu content) and B (having higher Ni, Cr and Cu content) heat treated under different conditions, and the correlation between its heat treatment, microstructure and properties were investigated. Micro structural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. Non-destructive electrochemical and ultrasonic testing on two TRIP-assisted steels was used to find out corrosion and mechanical properties of different alter microstructure phase’s steels. Furthermore, micro structural studies accompanied by the evaluation of mechanical properties revealed that steels having martensite phases with higher corrosive and hardness value were less sound velocity and also steel’s microstructure having finer grains that was more grain boundary was less corrosion resistance. Steel containing more Cu, Ni and Cr was less corrosive compared to other steels having same processing or microstructure.

Keywords: TRIP-assisted steels, heat treatment, corrosion, electrochemical techniques, micro-structural characterization, non-destructive (ultrasonic) technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970
937 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka

Authors: Y. Rathiranee, D. M. Semasinghe

Abstract:

This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self-employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have positive correlation with women empowerment as well as significant values at 5 percent level.

Keywords: Influencing factors, Micro finance, rural women and women empowerment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3899
936 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Optical fiber, strain, temperature, humidity, measurement, Bragg sensor, SHM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
935 Performance Monitoring of the Refrigeration System with Minimum Set of Sensors

Authors: Radek Fisera, Petr Stluka

Abstract:

This paper describes a methodology for remote performance monitoring of retail refrigeration systems. The proposed framework starts with monitoring of the whole refrigeration circuit which allows detecting deviations from expected behavior caused by various faults and degradations. The subsequent diagnostics methods drill down deeper in the equipment hierarchy to more specifically determine root causes. An important feature of the proposed concept is that it does not require any additional sensors, and thus, the performance monitoring solution can be deployed at a low installation cost. Moreover only a minimum of contextual information is required, which also substantially reduces time and cost of the deployment process.

Keywords: Condition monitoring, energy baselining, fault detection and diagnostics, commercial refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
934 Light Tracking Fault Tolerant Control System

Authors: J. Florescu, T. Vinay, L. Wang

Abstract:

A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.

Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
933 Development of a Fiber based Interferometric Sensor for Non-contact Displacement Measurement

Authors: S. Pullteap

Abstract:

In this paper, a fiber based Fabry-Perot interferometer is proposed and demonstrated for a non-contact displacement measurement. A piece of micro-prism which attached to the mechanical vibrator is served as the target reflector. Interference signal is generated from the superposition between the sensing beam and the reference beam within the sensing arm of the fiber sensor. This signal is then converted to the displacement value by using a developed program written in visual Cµ programming with a resolution of λ/8. A classical function generator is operated for controlling the vibrator. By fixing an excitation frequency of 100 Hz and varying the excitation amplitude range of 0.1 – 3 Volts, the output displacements measured by the fiber sensor are obtained from 1.55 μm to 30.225 μm. A reference displacement sensor with a sensitivity of ~0.4 μm is also employed for comparing the displacement errors between both sensors. We found that over the entire displacement range, a maximum and average measurement error are obtained of 0.977% and 0.44% respectively.

Keywords: Non-contact displacement measurement, extrinsicfiber based Fabry-Perot interferometer, interference signal, zerocrossingfringe counting technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
932 Development of Scratching Monitoring System Based On Mathematical Model of Unconstrained Bed Sensing Method

Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system; and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: 1st experiment is the subject’s scratching the right side cheek with his right hand, and; 2nd experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.

Keywords: Unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
931 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
930 Natural Radioactivity in Foods Consumed in Turkey

Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt

Abstract:

This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.

Keywords: Foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
929 Distributed Self-Healing Protocol for Unattended Wireless Sensor Network

Authors: E. Golden Julie, E. Sahaya Rose Vigita, S. Tamil Selvi

Abstract:

Wireless sensor network is vulnerable to a wide range of attacks. Recover secrecy after compromise, to develop technique that can detect intrusions and able to resilient networks that isolates the point(s) of intrusion while maintaining network connectivity for other legitimate users. To define new security metrics to evaluate collaborative intrusion resilience protocol, by leveraging the sensor mobility that allows compromised sensors to recover secure state after compromise. This is obtained with very low overhead and in a fully distributed fashion using extensive simulations support our findings.

Keywords: WSN security, intrusion resilience, compromised sensors, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
928 Effect of Composition on Work Hardening Coefficient of Bismuth-Lead Binary Alloy

Authors: K. A. Mistry, I. B. Patel, A. H. Prajapati

Abstract:

In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported.

Keywords: EDAX, hardening coefficient, Micro hardness, Bi-Pb alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
927 An Active Mixer with Vertical Flow Placement via a Series of Inlets for Micromixing

Authors: Pil Woo Heo, In Sub Park

Abstract:

Flows in a microchannel are laminar, which means that mixing depends on only inter-diffusion. A micromixer plays an important role in obtaining fast diagnosis results in the fields of m-TAS (total analysis system), Bio-MEMS and LOC (lab-on-a-chip).

In this paper, we propose a new active mixer with vertical flow placement via a series of inlets for micromixing. This has two inlets on the same axis, one of which is located before the other. The sample input by the first inlet flows into the down-position, while the other sample by the second inlet flows into the up-position. In the experiment, the samples were located vertically in up-down positions in a micro chamber. PZT was attached below a chamber, and ultrasonic waves were radiated in the down to up direction towards the samples in the micro chamber in order to accelerate the mixing. The mixing process was measured by the change of color in a micro chamber using phenolphthalein and NaOH. The results of the experiment showed that the samples in the microchamber were efficiently mixed and that our new active mixer was superior to the horizontal type of active mixers in view of the grey levels and the standard deviation.

Keywords: Active mixer, vertical flow placement, microchannel, bio-MEMS, LOC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
926 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
925 Influence of Calcium Intake Level to Osteoporptic Vertebral bone and Degenerated Disc in Biomechanical Study

Authors: Dae Gon Woo, Ji Hyung Park, Chi Hoon Kim, Tae Woo Lee, Beob Yi Lee, Han Sung Kim

Abstract:

The aim of the present study is to analyze the generation of osteoporotic vertebral bone induced by lack of calcium during growth period and analyze its effects for disc degeneration, based on biomechanical and histomorphometrical study. Mechanical and histomorphological characteristics of lumbar vertebral bones and discs of rats with calcium free diet (CFD) were detected and tracked by using high resolution in-vivo micro-computed tomography (in-vivo micro-CT), finite element (FE) and histological analysis. Twenty female Sprague-Dawley rats (6 weeks old, approximate weight 170g) were randomly divided into two groups (CFD group: 10, NOR group: 10). The CFD group was maintained on a refmed calcium-controlled semisynthetic diet without added calcium, to induce osteoporosis. All lumbar (L 1-L6) were scanned by using in vivo micro-CT with 35i.un resolution at 0, 4, 8 weeks to track the effects of CFD on the generation of osteoporosis. The fmdings of the present study indicated that calcium insufficiency was the main factor in the generation of osteoporosis and it induced lumbar vertebral disc degeneration. This study is a valuable experiment to firstly evaluate osteoporotic vertebral bone and disc degeneration induced by lack of calcium during growth period from a biomechanical and histomorphometrical point of view.

Keywords: Calcium free diet, Disc degeneration, Osteoporosis, in-vivo micro-CT, Finite element analysis, Histology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
924 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Sallehand Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: Readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), and ion sensor electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
923 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Sallehand, Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 Rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: Readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
922 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles

Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo

Abstract:

Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.

Keywords: Surface texturing, surface modification, topography, ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
921 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass

Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat

Abstract:

Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.

Keywords: Energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS piezoelectric, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
920 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors

Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson

Abstract:

The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.

Keywords: Cooking, indoor air quality, low-cost sensor, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
919 Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors

Authors: Amir Anvar, Dong Yang Li

Abstract:

This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.

Keywords: Energy harvesting, power system, oceanic, sensors, autonomous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4295
918 Drafting the Design and Development of Micro- Controller Based Portable Soil Moisture Sensor for Advancement in Agro Engineering

Authors: Guneet Mander, Gurinder Pal Singh

Abstract:

Moisture is an important consideration in many aspects ranging from irrigation, soil chemistry, golf course, corrosion and erosion, road conditions, weather predictions, livestock feed moisture levels, water seepage etc. Vegetation and crops always depend more on the moisture available at the root level than on precipitation occurrence. In this paper, design of an instrument is discussed which tells about the variation in the moisture contents of soil. This is done by measuring the amount of water content in soil by finding the variation in capacitance of soil with the help of a capacitive sensor. The greatest advantage of soil moisture sensor is reduced water consumption. The sensor is also be used to set lower and upper threshold to maintain optimum soil moisture saturation and minimize water wilting, contributes to deeper plant root growth ,reduced soil run off /leaching and less favorable condition for insects and fungal diseases. Capacitance method is preferred because, it provides absolute amount of water content and also measures water content at any depth.

Keywords: Capacitive Sensors, aluminum, Water, Irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
917 Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together.

Keywords: Map building, DSmT, DST, uncertainty, information fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
916 Environmental Inspection using WSANs Based on Multi-agent Coordination Method

Authors: Mohammad J. Heydari, Farnaz Derakhshan

Abstract:

In this paper, we focus on the problem of driving and herding a collection of autonomous actors to a given area. Then, a new method based on multi-agent coordination is proposed for solving the problem. In our proposed method, we assume that the environment is covered by sensors. When an event is occurred, sensors forward information to a sink node. Based on received information, the sink node will estimate the direction and the speed of movement of actors and announce the obtained value to the actors. The actors coordinate to reach the target location.

Keywords: Coordination, Environmental Inspection, Multiagent systems, Wireless Sensor and Actor Networks (WSANs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
915 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: CNC milling, CNC turning, surface roughness, Taguchi analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
914 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: Microstretch, deflection, exponential load, Laplace transforms, Residue theorem, simply supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
913 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines

Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar

Abstract:

River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.

Keywords: Micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
912 Dripping Modes of Newtonian Liquids: The Effect of Nozzle Inclination

Authors: Amaraja Taur, Pankaj Doshi, Hak Koon Yeoh

Abstract:

The dripping modes for a Newtonian liquid of viscosity µ emanating from an inclined nozzle at flow rate Q is investigated experimentally. As the liquid flow rate Q increases, starting with period-1 with satellite drops, the system transitions to period-1 dripping without satellite, then to limit cycle before showing chaotic responses. Phase diagrams showing the changes in the transitions between the different dripping modes for different nozzle inclination angle q is constructed in the dimensionless (Q, µ) space.

Keywords: Dripping, inclined nozzle, phase diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
911 Design and Analysis of Annular Combustion Chamber for a Micro Turbojet Engine

Authors: Rashid Slaheldinn Elhaj Mohammed

Abstract:

The design of high performance combustion chambers for turbojet engines is considered as one of the most challenges that face gas turbine designers, since the design approach depends on empirical correlations of data derived from the previous design experiences. The objective of this paper is to design a combustion chamber that suits the requirements of a micro-turbojet engine with 400 N output thrust and operates with kerosene as fuel. In this paper, only preliminary calculations related to the annular type of combustion chamber are explained in details. These calculations will cover the evaluation of reference quantities, calculation of required dimensions, calculation of air distribution and pressure drop, estimation of number and diameters for air admission holes, as well as aerodynamic considerations. The design process is then accompanied by analytical procedure using commercial CFD ANALYSIS tool; ANSYS 16 CFX software. After conducting CFD analysis, the design process will be then iterated in order to gain satisfactory results. It should be noted that the design of the fuel preparation and installation systems is beyond the scope of this work, and it will be discussed separately in another work.  

Keywords: Annular combustion chamber, micro-turbojet engine, CFD ANALYSIS, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
910 A DMB-TCA Simulation Method for On-Road Traffic Travel Demand Impact Analysis

Authors: Zundong Zhang, Limin Jia, Zhao Tian, Yanfang Yang

Abstract:

Travel Demands influence micro-level traffic behavior, furthermore traffic states. In order to evaluate the effect of travel demands on traffic states, this paper introduces the Demand- Motivation-Behaviors (DMB) micro traffic behavior analysis model which denotes that vehicles behaviors are determines by motivations that relies on traffic demands from the perspective of behavior science. For vehicles, there are two kinds of travel demands: reaching travel destinations from orientations and meeting expectations of travel speed. To satisfy travel demands, the micro traffic behaviors are delivered such as car following behavior, optional and mandatory lane changing behaviors. Especially, mandatory lane changing behaviors depending on travel demands take strong impact on traffic states. In this paper, we define the DMB-based cellular automate traffic simulation model to evaluate the effect of travel demands on traffic states under the different δ values that reflect the ratio of mandatory lane-change vehicles.

Keywords: Demand-Motivation-Behavior, Mandatory Lane Changing, Traffic Cellular Automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
909 Energy Consumption and Carbon Calculations of Microalgae Biodiesel

Authors: Tao Zhao, Zhao Liu, Changxin Zhao, Cui Mao

Abstract:

At present, the severe oil crisis and greenhouse effect are booming, which is a growing worry for China. Over a long period of study, choosing the development of biological diesel is a feasible way in the desertification region in China. With considering the adaptability of Micro-algae in desertification region and analyzing energy consumption and carbon calculations of Micro-algae biodiesel produced by JJ company , this paper, make the microalgae our optimal choice to develop biological diesel in china's desertification region.

Keywords: Biodiesel, Microalgae, Energy Consumption, CarbonCalculations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230