Search results for: intra-class probability distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2314

Search results for: intra-class probability distribution

2314 Determination of the Best Fit Probability Distribution for Annual Rainfall in Karkheh River at Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best-fit probability distribution of annual rainfall based on 50 years sample (1966-2015) in the Karkheh river basin at Iran using six probability distributions: Normal, 2-Parameter Log Normal, 3-Parameter Log Normal, Pearson Type 3, Log Pearson Type 3 and Gumbel distribution. The best fit probability distribution was selected using Stormwater Management and Design Aid (SMADA) software and based on the Residual Sum of Squares (R.S.S) between observed and estimated values Based on the R.S.S values of fit tests, the Log Pearson Type 3 and then Pearson Type 3 distributions were found to be the best-fit probability distribution at the Jelogir Majin and Pole Zal rainfall gauging station. The annual values of expected rainfall were calculated using the best fit probability distributions and can be used by hydrologists and design engineers in future research at studied region and other region in the world.

Keywords: Log Pearson Type 3, SMADA, rainfall, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
2313 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.

Keywords: Karkheh river, log pearson type III, probability distribution, residual sum of squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
2312 The Possibility-Probability Relationship for Bloodstream Concentrations of Physiologically Active Substances

Authors: Arkady Bolotin

Abstract:

If a possibility distribution and a probability distribution are describing values x of one and the same system or process x(t), can they relate to each other? Though in general the possibility and probability distributions might be not connected at all, we can assume that in some particular cases there is an association linked them. In the presented paper, we consider distributions of bloodstream concentrations of physiologically active substances and propose that the probability to observe a concentration x of a substance X can be produced from the possibility of the event X = x . The proposed assumptions and resulted theoretical distributions are tested against the data obtained from various panel studies of the bloodstream concentrations of the different physiologically active substances in patients and healthy adults as well.

Keywords: Possibility distributions, possibility-probability relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
2311 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: Crack size, Fatigue crack propagation, Magnesium alloys, Probability distribution, Specimen thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2310 Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to find the effect of load ratio on probability distribution of the fatigue crack propagation life at a specified grown crack size and to confirm the good probability distribution in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed. The effect of load ratio on variability of fatigue crack propagation life is also investigated.

Keywords: Load ratio, fatigue crack propagation life, Magnesium alloys, probability distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
2309 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
2308 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

Authors: Amir T. Payandeh Najafabadi

Abstract:

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.

Keywords: Ruin probability, compound Poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
2307 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

Authors: R. K. Saxena, Ravi Saxena

Abstract:

In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
2306 Determining the Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin

Authors: Naci Büyükkaracığan

Abstract:

Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.

Keywords: Gediz Basin, goodness-of-fit tests, Minimum flows, probability distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
2305 Nonconforming Control Charts for Zero-Inflated Poisson Distribution

Authors: N. Katemee, T. Mayureesawan

Abstract:

This paper developed the c-Chart based on a Zero- Inflated Poisson (ZIP) processes that approximated by a geometric distribution with parameter p. The p estimated that fit for ZIP distribution used in calculated the mean, median, and variance of geometric distribution for constructed the c-Chart by three difference methods. For cg-Chart, developed c-Chart by used the mean and variance of the geometric distribution constructed control limits. For cmg-Chart, the mean used for constructed the control limits. The cme- Chart, developed control limits of c-Chart from median and variance values of geometric distribution. The performance of charts considered from the Average Run Length and Average Coverage Probability. We found that for an in-control process, the cg-Chart is superior for low level of mean at all level of proportion zero. For an out-of-control process, the cmg-Chart and cme-Chart are the best for mean = 2, 3 and 4 at all level of parameter.

Keywords: average coverage probability, average run length, geometric distribution, zero-inflated poisson distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
2304 Coverage Probability of Confidence Intervals for the Normal Mean and Variance with Restricted Parameter Space

Authors: Sa-aat Niwitpong

Abstract:

Recent articles have addressed the problem to construct the confidence intervals for the mean of a normal distribution where the parameter space is restricted, see for example Wang [Confidence intervals for the mean of a normal distribution with restricted parameter space. Journal of Statistical Computation and Simulation, Vol. 78, No. 9, 2008, 829–841.], we derived, in this paper, analytic expressions of the coverage probability and the expected length of confidence interval for the normal mean when the whole parameter space is bounded. We also construct the confidence interval for the normal variance with restricted parameter for the first time and its coverage probability and expected length are also mathematically derived. As a result, one can use these criteria to assess the confidence interval for the normal mean and variance when the parameter space is restricted without the back up from simulation experiments.

Keywords: Confidence interval, coverage probability, expected length, restricted parameter space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
2303 Approximation for Average Error Probability of BPSK in the Presence of Phase Error

Authors: Yeonsoo Jang, Dongweon Yoon, Ki Ho Kwon, Jaeyoon Lee, Wooju Lee

Abstract:

Phase error in communications systems degrades error performance. In this paper, we present a simple approximation for the average error probability of the binary phase shift keying (BPSK) in the presence of phase error having a uniform distribution on arbitrary intervals. For the simple approximation, we use symmetry and periodicity of a sinusoidal function. Approximate result for the average error probability is derived, and the performance is verified through comparison with simulation result.

Keywords: Average error probability, Phase shift keying, Phase error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
2302 A Simplified Distribution for Nonlinear Seas

Authors: M. A. Tayfun, M. A. Alkhalidi

Abstract:

The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is reexamined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.

Keywords: Ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
2301 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs

Authors: Lokesh Varshney, R. K. Saket

Abstract:

This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operated as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machines operated as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.

Keywords: Residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
2300 Probability Distribution of Rainfall Depth at Hourly Time-Scale

Authors: S. Dan'azumi, S. Shamsudin, A. A. Rahman

Abstract:

Rainfall data at fine resolution and knowledge of its characteristics plays a major role in the efficient design and operation of agricultural, telecommunication, runoff and erosion control as well as water quality control systems. The paper is aimed to study the statistical distribution of hourly rainfall depth for 12 representative stations spread across Peninsular Malaysia. Hourly rainfall data of 10 to 22 years period were collected and its statistical characteristics were estimated. Three probability distributions namely, Generalized Pareto, Exponential and Gamma distributions were proposed to model the hourly rainfall depth, and three goodness-of-fit tests, namely, Kolmogorov-Sminov, Anderson-Darling and Chi-Squared tests were used to evaluate their fitness. Result indicates that the east cost of the Peninsular receives higher depth of rainfall as compared to west coast. However, the rainfall frequency is found to be irregular. Also result from the goodness-of-fit tests show that all the three models fit the rainfall data at 1% level of significance. However, Generalized Pareto fits better than Exponential and Gamma distributions and is therefore recommended as the best fit.

Keywords: Goodness-of-fit test, Hourly rainfall, Malaysia, Probability distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
2299 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
2298 Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test

Authors: Ayesha S. Rahman, Khaled Haddad, Ataur Rahman

Abstract:

At-site flood frequency analysis is used to estimate flood quantiles when at-site record length is reasonably long. In Australia, FLIKE software has been introduced for at-site flood frequency analysis. The advantage of FLIKE is that, for a given application, the user can compare a number of most commonly adopted probability distributions and parameter estimation methods relatively quickly using a windows interface. The new version of FLIKE has been incorporated with the multiple Grubbs and Beck test which can identify multiple numbers of potentially influential low flows. This paper presents a case study considering six catchments in eastern Australia which compares two outlier identification tests (original Grubbs and Beck test and multiple Grubbs and Beck test) and two commonly applied probability distributions (Generalized Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE software. It has been found that the multiple Grubbs and Beck test when used with LP3 distribution provides more accurate flood quantile estimates than when LP3 distribution is used with the original Grubbs and Beck test. Between these two methods, the differences in flood quantile estimates have been found to be up to 61% for the six study catchments. It has also been found that GEV distribution (with L moments) and LP3 distribution with the multiple Grubbs and Beck test provide quite similar results in most of the cases; however, a difference up to 38% has been noted for flood quantiles for annual exceedance probability (AEP) of 1 in 100 for one catchment. This finding needs to be confirmed with a greater number of stations across other Australian states.

Keywords: Floods, FLIKE, probability distributions, flood frequency, outlier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311
2297 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement – Case Study

Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák

Abstract:

Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.

Keywords: Failure, pavement, probability, reliability index, simulation, tensile crack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
2296 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: Repairable models, imperfect, availability, exponential distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
2295 Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads.

Keywords: Fatigue crack propagation life, magnesium alloys, maximum fatigue load, probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
2294 Entropic Measures of a Probability Sample Space and Exponential Type (α, β) Entropy

Authors: Rajkumar Verma, Bhu Dev Sharma

Abstract:

Entropy is a key measure in studies related to information theory and its many applications. Campbell for the first time recognized that the exponential of the Shannon’s entropy is just the size of the sample space, when distribution is uniform. Here is the idea to study exponentials of Shannon’s and those other entropy generalizations that involve logarithmic function for a probability distribution in general. In this paper, we introduce a measure of sample space, called ‘entropic measure of a sample space’, with respect to the underlying distribution. It is shown in both discrete and continuous cases that this new measure depends on the parameters of the distribution on the sample space - same sample space having different ‘entropic measures’ depending on the distributions defined on it. It was noted that Campbell’s idea applied for R`enyi’s parametric entropy of a given order also. Knowing that parameters play a role in providing suitable choices and extended applications, paper studies parametric entropic measures of sample spaces also. Exponential entropies related to Shannon’s and those generalizations that have logarithmic functions, i.e. are additive have been studies for wider understanding and applications. We propose and study exponential entropies corresponding to non additive entropies of type (α, β), which include Havard and Charvˆat entropy as a special case.

Keywords: Sample space, Probability distributions, Shannon’s entropy, R`enyi’s entropy, Non-additive entropies .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3391
2293 A New Algorithm for Enhanced Robustness of Copyright Mark

Authors: Harsh Vikram Singh, S. P. Singh, Anand Mohan

Abstract:

This paper discusses a new heavy tailed distribution based data hiding into discrete cosine transform (DCT) coefficients of image, which provides statistical security as well as robustness against steganalysis attacks. Unlike other data hiding algorithms, the proposed technique does not introduce much effect in the stegoimage-s DCT coefficient probability plots, thus making the presence of hidden data statistically undetectable. In addition the proposed method does not compromise on hiding capacity. When compared to the generic block DCT based data-hiding scheme, our method found more robust against a variety of image manipulating attacks such as filtering, blurring, JPEG compression etc.

Keywords: Information Security, Robust Steganography, Steganalysis, Pareto Probability Distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2292 Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles

Authors: Reza Hossseynie, Amir Jafari

Abstract:

This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.

Keywords: Steering, obstacle avoidance, mobile robots, constrained directions control, artificial potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
2291 The Research and Application of M/M/1/N Queuing Model with Variable Input Rates, Variable Service Rates and Impatient Customers

Authors: Quanru Pan

Abstract:

How to maintain the service speeds for the business to make the biggest profit is a problem worthy of study, which is discussed in this paper with the use of queuing theory. An M/M/1/N queuing model with variable input rates, variable service rates and impatient customers is established, and the following conclusions are drawn: the stationary distribution of the model, the relationship between the stationary distribution and the probability that there are n customers left in the system when a customer leaves (not including the customer who leaves himself), the busy period of the system, the average operating cycle, the loss probability for the customers not entering the system while they arriving at the system, the mean of the customers who leaves the system being for impatient, the loss probability for the customers not joining the queue due to the limited capacity of the system and many other indicators. This paper also indicates that the following conclusion is not correct: the more customers the business serve, the more profit they will get. At last, this paper points out the appropriate service speeds the business should keep to make the biggest profit.

Keywords: variable input rates, impatient customer, variable servicerates, profit maximization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
2290 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: Daily probability model, monsoon seasons, regions, storm events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
2289 Conflation Methodology Applied to Flood Recovery

Authors: E. L. Suarez, D. E. Meeroff, Y. Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: Community resilience, conflation, flood risk, nuisance flooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137
2288 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: Diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion equation, trends functions, bi-parameters Weibull density function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
2287 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos

Abstract:

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.

Keywords: Statistical slope stability analysis, Skew distributions, Probability of failure, Functions of random variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2286 Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

Authors: Mostafa A. Elshahed, Magdy M. Elmarsfawy, Hussain M. Zain Eldain

Abstract:

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Keywords: Dynamic Economic Dispatch, StochasticOptimization, Weibull Distribution, Wind Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
2285 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919