Search results for: geometric correction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 539

Search results for: geometric correction.

59 JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes

Authors: Francesco Pia

Abstract:

Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.

Keywords: Black hole, cosmological model, cosmology, white hole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
58 Performance Evaluation of Conventional and Wiper Carbide Tools When Turning 6060 Aluminium Alloy: Analysis of Surface Roughness

Authors: Salah Gariani, Taher Dao, Khaled Jegandi

Abstract:

Wiper inserts are widely used nowadays, particularly in turning and milling operations, due to their unique geometric characteristics that generate superb surface finish and improve productivity. Wiper inserts can produce double the feed rate while preserving comparable surface roughness compared to that produced by conventional cutting tools. This paper reports an experimental investigation of surface quality generated in the precision dry turning of 6060 Aluminium alloy using conventional and wiper inserts at different cutting conditions. The Taguchi L9 array, Analysis of Means (AOM) and variance (ANOVA) were employed in the development of the experimental design and to optimise the process parameter identified: average surface roughness (Ra). The experimental results show that the wiper inserts substantially improved the surface quality of the machined samples by a factor of two compared to those for the conventional insert under all cutting conditions. The ANOVA and AOM analysis showed that the type of insert is the most significant factor affecting surface roughness, with a Percentage Contribution Ratio (PCR) value of 67.41%. Feed rate also significantly affected surface roughness but contributed less to its variation. No significant difference was found between values of Ra using wiper inserts under dry and wet cooling modes when turning 6060 Aluminium alloy.

Keywords: 6060 Aluminium alloy, conventional and wiper carbide tools, dry turning, average surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255
57 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: Composites materials, laminated composite plate, shear deformation theory of plates, finite element analysis, free vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
56 Evaluation of drought Tolerance Indices in Dryland Bread wheat Genotypes under Post-Anthesis drought Stress

Authors: Mokhtar Ghobadi , Mohammad-Eghbal Ghobadi, Danial Kahrizi, Alireza Zebarjadi, Mahdi Geravandi

Abstract:

Post-anthesis drought stress is the most important problem affecting wheat production in dryland fields, specially in Mediterranean regions. The main objective of this research was to evaluate drought tolerance indices in dryland wheat genotypes under post-anthesis drought stress. The research was including two different experiments. In each experiment, twenty dryland bread wheat genotypes were sown in a randomized complete blocks design (RCBD) with three replications. One of experiments belonged to rain-fed conditions (post-anthesis drought stress) and other experiment was under non-stress conditions (with supplemental irrigation). Different drought tolerance indices include Stress Tolerance (Tol), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Harmonic Mean (HAM), Yield Index (YI) and Yield Stability Index (YSI) were evaluate based on grain yield under rain-fed (Ys) and supplemental irrigation (Yp) environments. G10 and G12 were the most tolerant genotypes based on TOL and SSI. But, based on MP, GMP, STI, HAM and YI indices, G1 and G2 were selected. STI, GMP and MP indices had high correlation with grain yield under rain-fed and supplementary irrigation conditions and were recognized as appropriate indices to identify genotypes with high grain yield and low sensitivity to drought stress environments.

Keywords: Dryland wheat, Supplemental irrigation, Tolerance indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
55 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
54 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
53 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: Multi-temporal satellite image, urban growth, Non-stationarity, stochastic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
52 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
51 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
50 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements

Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono

Abstract:

The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.

Keywords: Hip joint centre, motion capture, soft tissue artefact, ultrasound depth measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
49 Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model

Authors: M. Raciti Castelli, A. Fedrigo, E. Benini

Abstract:

A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.

Keywords: Wind turbine, BE-M, dynamic stall, streamtube expansion, airfoil finite aspect ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051
48 The Effect of a Three-Month Training Program on the Back Kyphosis of Former Male Addicts

Authors: M. J. Pourvaghar, Sh. Khoshemehry

Abstract:

Adopting inappropriate body posture during addiction can cause muscular and skeletal deformities. This study is aimed at investigating the effects of a program of the selected corrective exercises on the kyphosis of addicted male patients. Materials and methods: This was a quasi-experimental study. This study has been carried out using the semi-experimental method. The subjects of the present study included 104 addicted men between 25 to 45 years of age. In 2014, these men were referred to one of the NA (Narcotic Anonymous) centres in Kashan in 2015. A total of 24 people suffering from drug withdrawal, who had abnormal kyphosis, were purposefully selected as a sample. The sample was randomly divided into two groups, experimental and control; each group consisted of 12 people. The experimental group participated in a training program for 12 weeks consisting of three 60 minute sessions per week. That includes strengthening, stretching and PNF exercises (deep stretching of the muscle). The control group did no exercise or corrective activity. The Kolmogorov-Smirnov test was used to assess normal distribution of data; and a paired t-test and covariance analysis test were used to assess the effectiveness of the exercises, with a significance level of P≤0.05 by using SPSS18. The results showed that three months of the selected corrective exercises had a significant effect (P≤ 0.005) on the correction of the kyphosis of the addicted male patients after three months of rehabilitation (drug withdrawal) in the experimental group, while there was no significant difference recorded in the control group (P≥0.05). The results show that exercise and corrective activities can be used as non-invasive and non-pharmacological methods to rehabilitate kyphosis abnormalities after drug withdrawal and treatment for addiction.

Keywords: Kyphosis, corrective exercises, addict, drug withdrawal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
47 Numerical Analysis of the Influence of Airfoil Asymmetry on VAWT Performance

Authors: Marco Raciti Castelli, Giulia Simioni, Ernesto Benini

Abstract:

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a three-bladed small vertical axis Darrieus wind turbine depending on blade chord curvature with respect to rotor axis. The adopted survey methodology is based on an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry depending on the blade design geometric parameters, which is linked to a finite volume CFD code for the calculation of rotor performance. After describing and validating the model with experimental data, the results of numerical simulations are proposed on the bases of two different blade profile architectures, which are respectively characterized by a straight chord and by a curved one, having a chord radius equal to rotor external circumference. A CFD campaign of analysis is completed for three blade-candidate airfoil sections, that is the recently-developed DU 06-W-200 cambered blade profile, a classical symmetrical NACA 0021 and its derived cambered airfoil, characterized by a curved chord, having a chord radius equal to rotor external circumference. The effects of blade chord curvature on angle of attack, blade tangential and normal forces are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of blade camber on overall rotor performance.

Keywords: VAWT, NACA 0021, DU 06-W-200, cambered airfoil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
46 FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, Pasta, moisture determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
45 A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM

Authors: Md. Shafiqul Islam, Abdullah Khan, Sharon Kao-Walter, Li Jian

Abstract:

Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.

Keywords: Shear test specimen, Stress intensity factor, Finite Element simulation, Scanning electron microscopy, Screw cap opening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
44 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: Dynamic behavior, unsteady model, LaNi5, performance of the water pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
43 Rotation Invariant Fusion of Partial Image Parts in Vista Creation using Missing View Regeneration

Authors: H. B. Kekre, Sudeep D. Thepade

Abstract:

The automatic construction of large, high-resolution image vistas (mosaics) is an active area of research in the fields of photogrammetry [1,2], computer vision [1,4], medical image processing [4], computer graphics [3] and biometrics [8]. Image stitching is one of the possible options to get image mosaics. Vista Creation in image processing is used to construct an image with a large field of view than that could be obtained with a single photograph. It refers to transforming and stitching multiple images into a new aggregate image without any visible seam or distortion in the overlapping areas. Vista creation process aligns two partial images over each other and blends them together. Image mosaics allow one to compensate for differences in viewing geometry. Thus they can be used to simplify tasks by simulating the condition in which the scene is viewed from a fixed position with single camera. While obtaining partial images the geometric anomalies like rotation, scaling are bound to happen. To nullify effect of rotation of partial images on process of vista creation, we are proposing rotation invariant vista creation algorithm in this paper. Rotation of partial image parts in the proposed method of vista creation may introduce some missing region in the vista. To correct this error, that is to fill the missing region further we have used image inpainting method on the created vista. This missing view regeneration method also overcomes the problem of missing view [31] in vista due to cropping, irregular boundaries of partial image parts and errors in digitization [35]. The method of missing view regeneration generates the missing view of vista using the information present in vista itself.

Keywords: Vista, Overlap Estimation, Rotation Invariance, Missing View Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
42 Modeling of PZ in Haunch Connections Systems

Authors: Peyman Shadman Heidari, Roohollah Ahmady Jazany, Mahmood Reza Mehran, Pouya Shadman Heidari, Mohammad khorasani

Abstract:

Modeling of Panel Zone (PZ) seismic behavior, because of its role in overall ductility and lateral stiffness of steel moment frames, has been considered a challenge for years. There are some studies regarding the effects of different doubler plates thicknesses and geometric properties of PZ on its seismic behavior. However, there is not much investigation on the effects of number of provided continuity plates in case of presence of one triangular haunch, two triangular haunches and rectangular haunch (T shape haunches) for exterior columns. In this research first detailed finite element models of 12tested connection of SAC joint venture were created and analyzed then obtained cyclic behavior backbone curves of these models besides other FE models for similar tests were used for neural network training. Then seismic behavior of these data is categorized according to continuity plate-s arrangements and differences in type of haunches. PZ with one-sided haunches have little plastic rotation. As the number of continuity plates increases due to presence of two triangular haunches (four continuity plate), there will be no plastic rotation, in other words PZ behaves in its elastic range. In the case of rectangular haunch, PZ show more plastic rotation in comparison with one-sided triangular haunch and especially double-sided triangular haunches. Moreover, the models that will be presented in case of triangular one-sided and double- sided haunches and rectangular haunches as a result of this study seem to have a proper estimation of PZ seismic behavior.

Keywords: Continuity plate, FE models, Neural network, Panel zone, Plastic rotation, Rectangular haunch, Seismic behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
41 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision

Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha

Abstract:

Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.

Keywords: Group decision making, intuitionistic fuzzy entropy measure, intuitionistic fuzzy set, vendor selection VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
40 Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria

Authors: Chimaobi V. Okolo, Onyinye S. Ugwuanyi, Kenneth A. Okpala

Abstract:

This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.

Keywords: Exchange rate volatility, exchange rate determinants, manufacturing sector, official exchange rate, parallel exchange rate, real effective exchange rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
39 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: Differential Forms, Hölder Inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
38 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan

Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid

Abstract:

In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.

Keywords: Data quality, null hypothesis, seismic lines, seismic reflection survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 557
37 Application of AIMSUN Microscopic Simulation Model in Evaluating Side Friction Impacts on Traffic Stream Performance

Authors: H. Naghawi, M. Abu Shattal, W. Idewu

Abstract:

Side friction factors can be defined as all activities taking place at the side of the road and within the traffic stream, which would negatively affect the traffic stream performance. If the effect of these factors is adequately addressed and managed, traffic stream performance and capacity could be improved. The main objective of this paper is to identify and assess the impact of different side friction factors on traffic stream performance of a hypothesized urban arterial road. Hypothetical data were assumed mainly because there is no road operating under ideal conditions, with zero side friction, in the developing countries. This is important for the creation of the base model which is important for comparison purposes. For this purpose, three essential steps were employed. Step one, a hypothetical base model was developed under ideal traffic and geometric conditions. Step two, 18 hypothetical alternative scenarios were developed including side friction factors such as on-road parking, pedestrian movement, and the presence of trucks in the traffic stream. These scenarios were evaluated for one, two, and three lane configurations and under different traffic volumes ranging from low to high. Step three, the impact of side friction, of each scenario, on speed-flow models was evaluated using AIMSUN microscopic traffic simulation software. Generally, it was found that, a noticeable negative shift in the speed flow curves from the base conditions was observed for all scenarios. This indicates negative impact of the side friction factors on free flow speed and traffic stream average speed as well as on capacity.

Keywords: AIMSUN, parked vehicles, pedestrians, side friction, traffic performance, trucks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
36 Novel Use of a Quality Assurance Tool for Integrating Technology to HSE

Authors: Ragi Poyyara, Vivek V., Ashish Khaparde

Abstract:

The product development process (PDP) in the Technology group plays a very important role in the launch of any product. While a manufacturing process encourages the use of certain measures to reduce health, safety and environmental (HSE) risks on the shop floor, the PDP concentrates on the use of Geometric Dimensioning and Tolerancing (GD&T) to develop a flawless design. Furthermore, PDP distributes and coordinates activities between different departments such as marketing, purchasing, and manufacturing. However, it is seldom realized that PDP makes a significant contribution to developing a product that reduces HSE risks by encouraging the Technology group to use effective GD&T. The GD&T is a precise communication tool that uses a set of symbols, rules, and definitions to mathematically define parts to be manufactured. It is a quality assurance method widely used in the oil and gas sector. Traditionally it is used to ensure the interchangeability of a part without affecting its form, fit, and function. Parts that do not meet these requirements are rejected during quality audits. This paper discusses how the Technology group integrates this quality assurance tool into the PDP and how the tool plays a major role in helping the HSE department in its goal towards eliminating HSE incidents. The PDP involves a thorough risk assessment and establishes a method to address those risks during the design stage. An illustration shows how GD&T helped reduce safety risks by ergonomically improving assembling operations. A brief discussion explains how tolerances provided on a part help prevent finger injury. This tool has equipped Technology to produce fixtures, which are used daily in operations as well as manufacturing. By applying GD&T to create good fits, HSE risks are mitigated for operating personnel. Both customers and service providers benefit from reduced safety risks.

Keywords: HSE, PDP, GD&T, risks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
35 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281
34 Explicit Solution of an Investment Plan for a DC Pension Scheme with Voluntary Contributions and Return Clause under Logarithm Utility

Authors: Promise A. Azor, Avievie Igodo, Esabai M. Ase

Abstract:

The paper merged the return of premium clause and voluntary contributions to investigate retirees’ investment plan in a defined contributory (DC) pension scheme with a portfolio comprising of a risk-free asset and a risky asset whose price process is described by geometric Brownian motion (GBM). The paper considers additional voluntary contributions paid by members, charge on balance by pension fund administrators and the mortality risk of members of the scheme during the accumulation period by introducing return of premium clause. To achieve this, the Weilbull mortality force function is used to establish the mortality rate of members during accumulation phase. Furthermore, an optimization problem from the Hamilton Jacobi Bellman (HJB) equation is obtained using dynamic programming approach. Also, the Legendre transformation method is used to transform the HJB equation which is a nonlinear partial differential equation to a linear partial differential equation and solves the resultant equation for the value function and the optimal distribution plan under logarithm utility function. Finally, numerical simulations of the impact of some important parameters on the optimal distribution plan were obtained and it was observed that the optimal distribution plan is inversely proportional to the initial fund size, predetermined interest rate, additional voluntary contributions, charge on balance and instantaneous volatility.

Keywords: Legendre transform, logarithm utility, optimal distribution plan, return clause of premium, charge on balance, Weibull mortality function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129
33 Modelling of Soil Erosion by Non Conventional Methods

Authors: Ganesh D. Kale, Sheela N. Vadsola

Abstract:

Soil erosion is the most serious problem faced at global and local level. So planning of soil conservation measures has become prominent agenda in the view of water basin managers. To plan for the soil conservation measures, the information on soil erosion is essential. Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation 1 (RUSLE1or RUSLE) and Modified Universal Soil Loss Equation (MUSLE), RUSLE 1.06, RUSLE1.06c, RUSLE2 are most widely used conventional erosion estimation methods. The essential drawbacks of USLE, RUSLE1 equations are that they are based on average annual values of its parameters and so their applicability to small temporal scale is questionable. Also these equations do not estimate runoff generated soil erosion. So applicability of these equations to estimate runoff generated soil erosion is questionable. Data used in formation of USLE, RUSLE1 equations was plot data so its applicability at greater spatial scale needs some scale correction factors to be induced. On the other hand MUSLE is unsuitable for predicting sediment yield of small and large events. Although the new revised forms of USLE like RUSLE 1.06, RUSLE1.06c and RUSLE2 were land use independent and they have almost cleared all the drawbacks in earlier versions like USLE and RUSLE1, they are based on the regional data of specific area and their applicability to other areas having different climate, soil, land use is questionable. These conventional equations are applicable for sheet and rill erosion and unable to predict gully erosion and spatial pattern of rills. So the research was focused on development of nonconventional (other than conventional) methods of soil erosion estimation. When these non-conventional methods are combined with GIS and RS, gives spatial distribution of soil erosion. In the present paper the review of literature on non- conventional methods of soil erosion estimation supported by GIS and RS is presented.

Keywords: Conventional methods, GIS, non-conventionalmethods, remote sensing, soil erosion modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4235
32 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, Finite Element Method (FEM) based analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced openings. This paper presents the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced opening. The study considered simply-supported rectangular plates subjected to in-plane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Langrangian with large displacement/small strain formulation was used for such analyses. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration.

Keywords: Cold-formed steel, finite element analysis, opening, reinforcement, shear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
31 Influence of Drought on Yield and Yield Components in White Bean

Authors: Gholamreza Habibi

Abstract:

In order to study seed yield and seed yield components in bean under reduced irrigation condition and assessment drought tolerance of genotypes, 15 lines of White beans were evaluated in two separate RCB design with 3 replications under stress and non stress conditions. Analysis of variance showed that there were significant differences among varieties in terms of traits under study, indicating the existence of genetic variation among varieties. The results indicate that drought stress reduced seed yield, number of seed per plant, biological yield and number of pod in White been. In non stress condition, yield was highly correlated with the biological yield, whereas in stress condition it was highly correlated with harvest index. Results of stepwise regression showed that, selection can we done based on, biological yield, harvest index, number of seed per pod, seed length, 100 seed weight. Result of path analysis showed that the highest direct effect, being positive, was related to biological yield in non stress and to harvest index in stress conditions. Factor analysis were accomplished in stress and nonstress condition a, there were 4 factors that explained more than 76 percent of total variations. We used several selection indices such as Stress Susceptibility Index ( SSI ), Geometric Mean Productivity ( GMP ), Mean Productivity ( MP ), Stress Tolerance Index ( STI ) and Tolerance Index ( TOL ) to study drought tolerance of genotypes, we found that the best Stress Index for selection tolerance genotypes were STI, GMP and MP were the greatest correlations between these Indices and seed yield under stress and non stress conditions. In classification of genotypes base on phenotypic characteristics, using cluster analysis ( UPGMA ), all allels classified in 5 separate groups in stress and non stress conditions.

Keywords: Cluster analysis, factor analysis, path analysis, selection index, White bean

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
30 A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

Authors: Roberto Sabatini, Terry Moore, Chris Hill

Abstract:

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

Keywords: Global Navigation Satellite Systems (GNSS), Integrity Augmentation, Unmanned Aircraft Systems, Aircraft Based Augmentation, Avionics Based Integrity Augmentation, Safety-Critical Applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174