Search results for: frequency feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2587

Search results for: frequency feature

2527 Practical Method for Digital Music Matching Robust to Various Sound Qualities

Authors: Bokyung Sung, Jungsoo Kim, Jinman Kwun, Junhyung Park, Jihye Ryeo, Ilju Ko

Abstract:

In this paper, we propose a practical digital music matching system that is robust to variation in sound qualities. The proposed system is subdivided into two parts: client and server. The client part consists of the input, preprocessing and feature extraction modules. The preprocessing module, including the music onset module, revises the value gap occurring on the time axis between identical songs of different formats. The proposed method uses delta-grouped Mel frequency cepstral coefficients (MFCCs) to extract music features that are robust to changes in sound quality. According to the number of sound quality formats (SQFs) used, a music server is constructed with a feature database (FD) that contains different sub feature databases (SFDs). When the proposed system receives a music file, the selection module selects an appropriate SFD from a feature database; the selected SFD is subsequently used by the matching module. In this study, we used 3,000 queries for matching experiments in three cases with different FDs. In each case, we used 1,000 queries constructed by mixing 8 SQFs and 125 songs. The success rate of music matching improved from 88.6% when using single a single SFD to 93.2% when using quadruple SFDs. By this experiment, we proved that the proposed method is robust to various sound qualities.

Keywords: Digital Music, Music Matching, Variation in Sound Qualities, Robust Matching method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
2526 Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR

Authors: M. Soryani, N. Rafat

Abstract:

Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.

Keywords: Feature Subset Selection, Genetic Algorithms, Optical Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
2525 Feature-Based Machining using Macro

Authors: M. Razak, A. Jusoh, A. Zakaria

Abstract:

This paper presents an on-going research work on the implementation of feature-based machining via macro programming. Repetitive machining features such as holes, slots, pockets etc can readily be encapsulated in macros. Each macro consists of methods on how to machine the shape as defined by the feature. The macro programming technique comprises of a main program and subprograms. The main program allows user to select several subprograms that contain features and define their important parameters. With macros, complex machining routines can be implemented easily and no post processor is required. A case study on machining of a part that comprised of planar face, hole and pocket features using the macro programming technique was carried out. It is envisaged that the macro programming technique can be extended to other feature-based machining fields such as the newly developed STEP-NC domain.

Keywords: Feature-based machining, CNC, Macro, STEP-NC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
2524 A Novel Frequency Offset Estimation Scheme for OFDM Systems

Authors: Youngpo Lee, Seokho Yoon

Abstract:

In this paper, we propose a novel frequency offset estimation scheme for orthogonal frequency division multiplexing (OFDM) systems. By correlating the OFDM signals within the coherence phase bandwidth and employing a threshold in the frequency offset estimation process, the proposed scheme is not only robust to the timing offset but also has a reduced complexity compared with that of the conventional scheme. Moreover, a timing offset estimation scheme is also proposed as the next stage of the proposed frequency offset estimation. Numerical results show that the proposed scheme can estimate frequency offset with lower computational complexity and does not require additional memory while maintaining the same level of estimation performance.

Keywords: OFDM, frequency offset estimation, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
2523 Palmprint based Cancelable Biometric Authentication System

Authors: Ying-Han Pang, Andrew Teoh Beng Jin, David Ngo Chek Ling

Abstract:

A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.

Keywords: Cancelable biometric authenticator, Discrete- Hashing, Moments, Palmprint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2522 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113
2521 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
2520 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
2519 Low Frequency Multiple Divider Using Resonant Model

Authors: Chih Chin Yang, Chih Yu Lee, Jing Yi Wang, Mei Zhen Xue, Chia Yueh Wu

Abstract:

A well-defined frequency multiple dividing (FMD) circuit using a resonant model is presented in this research. The basic component of a frequency multiple divider as used in a resonant model is established by compositing a well-defined resonant effect of negative differential resistance (NDR) characteristics which possesses a wider operational region and high operational current at a bias voltage of about 1.15 V. The resonant model is then applied in the frequency dividing circuit with the above division ratio (RD) of 200 at the signal input of middle frequency. The division ratio also exists at the input of a low frequency signal.

Keywords: Divider, frequency, resonant model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
2518 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
2517 A Fast Object Detection Method with Rotation Invariant Features

Authors: Zilong He, Yuesheng Zhu

Abstract:

Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.

Keywords: gradient feature, online learning, rotationinvariance, template feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
2516 An Advanced Method for Speech Recognition

Authors: Meysam Mohamad pour, Fardad Farokhi

Abstract:

In this paper in consideration of each available techniques deficiencies for speech recognition, an advanced method is presented that-s able to classify speech signals with the high accuracy (98%) at the minimum time. In the presented method, first, the recorded signal is preprocessed that this section includes denoising with Mels Frequency Cepstral Analysis and feature extraction using discrete wavelet transform (DWT) coefficients; Then these features are fed to Multilayer Perceptron (MLP) network for classification. Finally, after training of neural network effective features are selected with UTA algorithm.

Keywords: Multilayer perceptron (MLP) neural network, Discrete Wavelet Transform (DWT) , Mels Scale Frequency Filter , UTA algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
2515 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
2514 Efficient Feature-Based Registration for CT-M R Images Based on NSCT and PSO

Authors: Nemir Al-Azzawi, Harsa A. Mat Sakim, Wan Ahmed K. Wan Abdullah, Yasmin Mohd Yacob

Abstract:

Feature-based registration is an effective technique for clinical use, because it can greatly reduce computational costs. However, this technique, which estimates the transformation by using feature points extracted from two images, may cause misalignments. To handle with this limitation, we propose to extract the salient edges and extracted control points (CP) of medical images by using efficiency of multiresolution representation of data nonsubsampled contourlet transform (NSCT) that finds the best feature points. The MR images were first decomposed using the NSCT, and then Edge and CP were extracted from bandpass directional subband of NSCT coefficients and some proposed rules. After edge and CP extraction, mutual information was adopted for the registration of feature points and translation parameters are calculated by using particle swarm optimization (PSO). The experimental results showed that the proposed method produces totally accurate performance for registration medical CT-MR images.

Keywords: Feature-based registration, mutual information, nonsubsampled contourlet transform, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2513 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
2512 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision

Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto

Abstract:

The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.

Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
2511 A Hybrid Feature Subset Selection Approach based on SVM and Binary ACO. Application to Industrial Diagnosis

Authors: O. Kadri, M. D. Mouss, L.H. Mouss, F. Merah

Abstract:

This paper proposes a novel hybrid algorithm for feature selection based on a binary ant colony and SVM. The final subset selection is attained through the elimination of the features that produce noise or, are strictly correlated with other already selected features. Our algorithm can improve classification accuracy with a small and appropriate feature subset. Proposed algorithm is easily implemented and because of use of a simple filter in that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through a real Rotary Cement kiln dataset. The results show that our algorithm outperforms existing algorithms.

Keywords: Binary Ant Colony algorithm, Support VectorMachine, feature selection, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
2510 Scale-Space Volume Descriptors for Automatic 3D Facial Feature Extraction

Authors: Daniel Chen, George Mamic, Clinton Fookes, Sridha Sridharan

Abstract:

An automatic method for the extraction of feature points for face based applications is proposed. The system is based upon volumetric feature descriptors, which in this paper has been extended to incorporate scale space. The method is robust to noise and has the ability to extract local and holistic features simultaneously from faces stored in a database. Extracted features are stable over a range of faces, with results indicating that in terms of intra-ID variability, the technique has the ability to outperform manual landmarking.

Keywords: Scale space volume descriptor, feature extraction, 3D facial landmarking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
2509 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation

Authors: Khattab Ibrahim Al Qaisi, Nicholas Bowring

Abstract:

This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.

Keywords: SVPWM, THD, DC-AC Inverter, Sampling Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
2508 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

Authors: Kriengkrai Assawamartbunlue, Channarong Wantha

Abstract:

This paper presents effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e., absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and be very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Keywords: Acoustic properties, Carnot’s efficiency, Interference of waves, Operating pressure, Optimal operating frequency, Stack performance, Standing Wave, Thermoacoustic refrigerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
2507 SURF Based Image Matching from Different Angle of Viewpoints using Rectification and Simplified Orientation Correction

Authors: K.M.Goh, M.M.Mokji, S.A.R. Abu-Bakar

Abstract:

Speeded-Up Robust Feature (SURF) is commonly used for feature matching in stereovision because of their robustness towards scale changes and rotational changes. However, SURF feature cannot cope with large viewpoint changes or skew distortion. This paper introduces a method which can help to improve the wide baseline-s matching performance in term of accuracy by rectifying the image using two vanishing points. Simplified orientation correction was used to remove the false matching..

Keywords: Affine, orientation, projective, SURF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
2506 Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach

Authors: Liming Zhang

Abstract:

There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.

Keywords: Adaptive Fourier decomposition, Fourier series, signal processing, instantaneous frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
2505 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
2504 Frequency Estimation Using Analytic Signal via Wavelet Transform

Authors: Sudipta Majumdar, Akansha Singh

Abstract:

Frequency estimation of a sinusoid in white noise using maximum entropy power spectral estimation has been shown to be very sensitive to initial sinusoidal phase. This paper presents use of wavelet transform to find an analytic signal for frequency estimation using maximum entropy method (MEM) and compared the results with frequency estimation using analytic signal by Hilbert transform method and frequency estimation using real data together with MEM. The presented method shows the improved estimation precision and antinoise performance.

Keywords: Frequency estimation, analytic signal, maximum entropy method, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
2503 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
2502 An Advanced Time-Frequency Domain Method for PD Extraction with Non-Intrusive Measurement

Authors: Guomin Luo, Daming Zhang, Yong Kwee Koh, Kim Teck Ng, Helmi Kurniawan, Weng Hoe Leong

Abstract:

Partial discharge (PD) detection is an important method to evaluate the insulation condition of metal-clad apparatus. Non-intrusive sensors which are easy to install and have no interruptions on operation are preferred in onsite PD detection. However, it often lacks of accuracy due to the interferences in PD signals. In this paper a novel PD extraction method that uses frequency analysis and entropy based time-frequency (TF) analysis is introduced. The repetitive pulses from convertor are first removed via frequency analysis. Then, the relative entropy and relative peak-frequency of each pulse (i.e. time-indexed vector TF spectrum) are calculated and all pulses with similar parameters are grouped. According to the characteristics of non-intrusive sensor and the frequency distribution of PDs, the pulses of PD and interferences are separated. Finally the PD signal and interferences are recovered via inverse TF transform. The de-noised result of noisy PD data demonstrates that the combination of frequency and time-frequency techniques can discriminate PDs from interferences with various frequency distributions.

Keywords: Entropy, Fourier analysis, non-intrusive measurement, time-frequency analysis, partial discharge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
2501 Two Class Motor Imagery Classification via Wave Atom Sub-Bants

Authors: Nebi Gedik

Abstract:

The goal of motor image brain computer interface research is to create a link between the central nervous system and a computer or device. The most important signal for brain-computer interface is the electroencephalogram. The aim of this research is to explore a set of effective features from EEG signals, separated into frequency bands, using wave atom sub-bands to discriminate right and left-hand motor imagery signals. Over the transform coefficients, feature vectors are constructed for each frequency range and each transform sub-band, and their classification performances are tested. The method is validated using EEG signals from the BCI competition III dataset IIIa and classifiers such as support vector machine and k-nearest neighbors.

Keywords: motor imagery, EEG, Wave atom transform sub-bands, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
2500 An Approach for the Prediction of Cardiovascular Diseases

Authors: Nebi Gedik

Abstract:

Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.

Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70
2499 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
2498 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition

Authors: Liming Zhang

Abstract:

In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.

Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684