Search results for: energy system optimization models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12981

Search results for: energy system optimization models

12681 Development of an Intelligent Tool for Planning the Operation

Authors: T. R. Alencar, P. T. Leite

Abstract:

Several optimization algorithms specifically applied to the problem of Operation Planning of Hydrothermal Power Systems have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. Thus, this paper presents the development of a computational tool for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique, Genetic Algorithms and programming language Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: Energy, Optimization, Hydrothermal Power Systemsand Genetic Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
12680 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide

Authors: M. Yusefzad

Abstract:

Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.

Keywords: Power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
12679 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex

Authors: Li Zhu, Binghua Wang, Yong Sun

Abstract:

China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.

Keywords: Agritourism complex, energy planning, energy demand simulation, hierarchical structure model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
12678 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)

Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat

Abstract:

An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.

Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
12677 ANN Models for Microstrip Line Synthesis and Analysis

Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy

Abstract:

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
12676 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: Energy-efficient, fog computing, IoT, telehealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52
12675 Testing Database of Information System using Conceptual Modeling

Authors: Bogdan Walek, Cyril Klimes

Abstract:

This paper focuses on testing database of existing information system. At the beginning we describe the basic problems of implemented databases, such as data redundancy, poor design of database logical structure or inappropriate data types in columns of database tables. These problems are often the result of incorrect understanding of the primary requirements for a database of an information system. Then we propose an algorithm to compare the conceptual model created from vague requirements for a database with a conceptual model reconstructed from implemented database. An algorithm also suggests steps leading to optimization of implemented database. The proposed algorithm is verified by an implemented prototype. The paper also describes a fuzzy system which works with the vague requirements for a database of an information system, procedure for creating conceptual from vague requirements and an algorithm for reconstructing a conceptual model from implemented database.

Keywords: testing, database, relational database, information system, conceptual model, fuzzy, uncertain information, database testing, reconstruction, requirements, optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
12674 A Novel Design Approach for Mechatronic Systems Based On Multidisciplinary Design Optimization

Authors: Didier Casner, Jean Renaud, Remy Houssin, Dominique Knittel

Abstract:

In this paper, a novel approach for the multidisciplinary design optimization (MDO) of complex mechatronic systems. This approach, which is a part of a global project aiming to include the MDO aspect inside an innovative design process. As a first step, the paper considers the MDO as a redesign approach which is limited to the parametric optimization. After defining and introducing the different keywords, the proposed method which is based on the V-Model which is commonly used in mechatronics.

Keywords: mechatronics, Multidisciplinary Design Optimization (MDO), multiobjective optimization, engineering design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
12673 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
12672 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
12671 Digital Redesign of Interval Systems via Particle Swarm Optimization

Authors: Chen-Chien Hsu, Chun-Hui Gao

Abstract:

In this paper, a PSO-based approach is proposed to derive a digital controller for redesigned digital systems having an interval plant based on resemblance of the extremal gain/phase margins. By combining the interval plant and a controller as an interval system, extremal GM/PM associated with the loop transfer function can be obtained. The design problem is then formulated as an optimization problem of an aggregated error function revealing the deviation on the extremal GM/PM between the redesigned digital system and its continuous counterpart, and subsequently optimized by a proposed PSO to obtain an optimal set of parameters for the digital controller. Computer simulations have shown that frequency responses of the redesigned digital system having an interval plant bare a better resemblance to its continuous-time counter part by the incorporation of a PSO-derived digital controller in comparison to those obtained using existing open-loop discretization methods.

Keywords: Digital redesign, Extremal systems, Particle swarm optimization, Uncertain interval systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
12670 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
12669 Evaluation of Optimal Transfer Capability in Power System Interconnection

Authors: Jin-O Kim, Hyun-Il Son

Abstract:

As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method in this paper, and is compared with well-being method and risk-benefit method. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency)

Keywords: ATC, power system interconnection, well-being method, cost-optimization method, risk-benefit analysis, outage cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
12668 An Approach for Optimization of Functions and Reducing the Value of the Product by Using Virtual Models

Authors: A. Bocevska, G. Todorov, T. Neshkov

Abstract:

New developed approach for Functional Cost Analysis (FCA) based on virtual prototyping (VP) models in CAD/CAE environment, applicable and necessary in developing new products is presented. It is instrument for improving the value of the product while maintaining costs and/or reducing the costs of the product without reducing value. Five broad classes of VP methods are identified. Efficient use of prototypes in FCA is a vital activity that can make the difference between successful and unsuccessful entry of new products into the competitive word market. Successful realization of this approach is illustrated for a specific example using press joint power tool.

Keywords: CAD/CAE environment, Functional Cost Analysis (FCA), Virtual prototyping (VP) models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
12667 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
12666 MIMO System Order Reduction Using Real-Coded Genetic Algorithm

Authors: Swadhin Ku. Mishra, Sidhartha Panda, Simanchala Padhy, C. Ardil

Abstract:

In this paper, real-coded genetic algorithm (RCGA) optimization technique has been applied for large-scale linear dynamic multi-input-multi-output (MIMO) system. The method is based on error minimization technique where the integral square error between the transient responses of original and reduced order models has been minimized by RCGA. The reduction procedure is simple computer oriented and the approach is comparable in quality with the other well-known reduction techniques. Also, the proposed method guarantees stability of the reduced model if the original high-order MIMO system is stable. The proposed approach of MIMO system order reduction is illustrated with the help of an example and the results are compared with the recently published other well-known reduction techniques to show its superiority.

Keywords: Multi-input-multi-output (MIMO) system.Modelorder reduction. Integral squared error (ISE). Real-coded geneticalgorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
12665 Transmission Lines Loading Enhancement Using ADPSO Approach

Authors: M. Mahdavi, H. Monsef, A. Bagheri

Abstract:

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

Keywords: ADPSO, TEP problem, Lines loading optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
12664 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: Ductile moment frame, delayed wire rope bracing, cyclic loading, hysteresis curve, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
12663 Students’ Perception of Using Dental e-Models in an Inquiry-Based Curriculum

Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges

Abstract:

Aim: To investigate students’ perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding students’ perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, students' preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.

Keywords: E-models, inquiry-based curriculum, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
12662 A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Authors: D. Vijayakumar, R. K. Nema

Abstract:

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Keywords: Directional over current relays, Optimization techniques, Particle swarm optimization, Power system protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
12661 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: Deterministic stable election protocol, energy model, fuzzy logic, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
12660 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of exoskeletons and active orthoses for lower limbs is a significant aspect of the design of such devices because it affects their efficacy. The F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated that the F-IVT is still an advantageous actuator which permits to save energy consumption and to downsize the electric motor even when it does not work in nominal conditions.

Keywords: Active orthoses, actuators, lower extremity exoskeletons, knee joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
12659 Vibration Attenuation Using Functionally Graded Material

Authors: Saeed Asiri, Hassan Hedia, Wael Eissa

Abstract:

The aim of the work was to attenuate the vibration amplitude in CESNA 172 airplane wing by using Functionally Graded Material instead of uniform or composite material. Wing strength was achieved by means of stress analysis study, while wing vibration amplitudes and shapes were achieved by means of Modal and Harmonic analysis. Results were verified by applying the methodology in a simple cantilever plate to the simple model and the results were promising and the same methodology can be applied to the airplane wing model. Aluminum models, Titanium models, and functionally graded materials of Aluminum and titanium results were compared to show a great vibration attenuation after using the FGM. Optimization in FGM gradation satisfied our objective of reducing and attenuating the vibration amplitudes to show the effect of using FGM in vibration behavior. Testing the Aluminum rich models, and comparing it with the titanium rich model was an optimization in this paper. Results have shown a significant attenuation in vibration magnitudes when using FGM instead of Titanium Plate, and Aluminium wing with FGM Spurs instead of Aluminium wings. It was also recommended that in future, changing the graphical scale to 1:10 or even 1:1 when the computers- capabilities allow.

Keywords: Vibration, Attenuation, FGM, ANSYS2011, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3095
12658 Temporal Analysis of Magnetic Nerve Stimulation–Towards Enhanced Systems via Virtualisation

Authors: Stefan M. Goetz, Thomas Weyh, Hans-Georg Herzog

Abstract:

The triumph of inductive neuro-stimulation since its rediscovery in the 1980s has been quite spectacular. In lots of branches ranging from clinical applications to basic research this system is absolutely indispensable. Nevertheless, the basic knowledge about the processes underlying the stimulation effect is still very rough and rarely refined in a quantitative way. This seems to be not only an inexcusable blank spot in biophysics and for stimulation prediction, but also a fundamental hindrance for technological progress. The already very sophisticated devices have reached a stage where further optimization requires better strategies than provided by simple linear membrane models of integrate-and-fire style. Addressing this problem for the first time, we suggest in the following text a way for virtual quantitative analysis of a stimulation system. Concomitantly, this ansatz seems to provide a route towards a better understanding by using nonlinear signal processing and taking the nerve as a filter that is adapted for neuronal magnetic stimulation. The model is compact and easy to adjust. The whole setup behaved very robustly during all performed tests. Exemplarily a recent innovative stimulator design known as cTMS is analyzed and dimensioned with this approach in the following. The results show hitherto unforeseen potentials.

Keywords: Theory of magnetic stimulation, inversion, optimization, high voltage oscillator, TMS, cTMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
12657 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression

Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr

Abstract:

Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.

Keywords: Design of experiments, regression analysis, SI Engine, statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
12656 An Adaptive Hand-Talking System for the Hearing Impaired

Authors: Zhou Yu, Jiang Feng

Abstract:

An adaptive Chinese hand-talking system is presented in this paper. By analyzing the 3 data collecting strategies for new users, the adaptation framework including supervised and unsupervised adaptation methods is proposed. For supervised adaptation, affinity propagation (AP) is used to extract exemplar subsets, and enhanced maximum a posteriori / vector field smoothing (eMAP/VFS) is proposed to pool the adaptation data among different models. For unsupervised adaptation, polynomial segment models (PSMs) are used to help hidden Markov models (HMMs) to accurately label the unlabeled data, then the "labeled" data together with signerindependent models are inputted to MAP algorithm to generate signer-adapted models. Experimental results show that the proposed framework can execute both supervised adaptation with small amount of labeled data and unsupervised adaptation with large amount of unlabeled data to tailor the original models, and both achieve improvements on the performance of recognition rate.

Keywords: sign language recognition, signer adaptation, eMAP/VFS, polynomial segment model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
12655 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
12654 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
12653 Multi-models Approach for Describing and Verifying Constraints Based Interactive Systems

Authors: Mamoun Sqali, Mohamed Wassim Trojet

Abstract:

The requirements analysis, modeling, and simulation have consistently been one of the main challenges during the development of complex systems. The scenarios and the state machines are two successful models to describe the behavior of an interactive system. The scenarios represent examples of system execution in the form of sequences of messages exchanged between objects and are a partial view of the system. In contrast, state machines can represent the overall system behavior. The automation of processing scenarios in the state machines provide some answers to various problems such as system behavior validation and scenarios consistency checking. In this paper, we propose a method for translating scenarios in state machines represented by Discreet EVent Specification and procedure to detect implied scenarios. Each induced DEVS model represents the behavior of an object of the system. The global system behavior is described by coupling the atomic DEVS models and validated through simulation. We improve the validation process with integrating formal methods to eliminate logical inconsistencies in the global model. For that end, we use the Z notation.

Keywords: Scenarios, DEVS, synthesis, validation and verification, simulation, formal verification, z notation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
12652 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491