Search results for: emulsion polymerization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 111

Search results for: emulsion polymerization

111 A Study on Polymer Coated Colour Pigments for Water-Based Ink

Authors: T. K N. Hoang, P. A. Tuan, R. Finsy, L. Deriemaeker

Abstract:

The pigments covered by film-forming polymers have opened a prospect to improve the quality of water-based printing inks. In this study such pigments were prepared by the initiated polymerization of styrene and methacrylate derivative monomers in the aqueous pigment dispersions. The formation of polymer films covering pigment cores depends on the polymerization time and the ratio of pigment to monomers. At the time of 4 hours and the ratio of 1/10 almost pigment particles are coated by the polymer. The formed polymer covers of pigments have the average thickness of 5.95 nm. The size increasing percentage of the coated particles after a week is 4.5 %, about fourteen-fold lower than of the original ones. The obtained results indicate that the coated pigments are improved dispersion stability in water medium along with a guarantee for the optical colour.

Keywords: Aqueous pigment dispersion stability, colored resin particles, emulsion polymerization, water based ink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
110 Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study

Authors: A.N. Ilia Anisa, Abdurahman H.Nour

Abstract:

The influence of viscosity on droplet diameter for water-in-crude oil (w/o) emulsion with two different ratios; 20-80 % and 50-50 % w/o emulsion was examined in the Brookfield Rotational Digital Rheometer. The emulsion was prepared with sorbitan sesquiolate (Span 83) act as emulsifier at varied temperature and stirring speed in rotation per minute (rpm). Results showed that the viscosity of w/o emulsion was strongly augmented by increasing volume of water and decreased the temperature. The changing of viscosity also altered the droplet size distribution. Changing of droplet diameter was depends on the viscosity and the behavior of emulsion either Newtonian or non-Newtonian.

Keywords: Diameter, phase ratio, viscosity, water-in-crude oil(w/o).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7653
109 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, micro emulsion, performance, SI engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
108 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), tert-butyl acrylate (tBA), and methylene-bis-acrylamide (MBA) on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000 nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200 nm to 800 nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in NGH-bearing sediments.

Keywords: Temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45
107 Application of Liquid Emulsion Membrane Technique for the Removal of Cadmium(II) from Aqueous Solutions Using Aliquat 336 as a Carrier

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

In the present work, emulsion liquid membrane (ELM) technique was applied for the extraction of cadmium(II) present in aqueous samples. Aliquat 336 (Chloride tri-N-octylmethylammonium) was used as carrier to extract cadmium(II). The main objective of this work is to investigate the influence of various parameters affected the ELM formation and its stability and testing the performance of the prepared ELM on removal of cadmium by using synthetic solution with different concentrations. Experiments were conducted to optimize pH of the feed solution and it was found that cadmium(II) can be extracted at pH 6.5. The influence of the carrier concentration and treat ratio on the extraction process was investigated. The obtained results showed that the optimal values are respectively 3% (Aliquat 336) and a ratio (feed: emulsion) equal to 1:1.

Keywords: Cadmium, carrier, emulsion liquid membrane, surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
106 Photopolymerization of Dimethacrylamide with (Meth)acrylates

Authors: Yuling Xu, Haibo Wang, Dong Xie

Abstract:

A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion.

Keywords: Photopolymerization, dimethacrylamide, degree of conversion, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
105 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue

Abstract:

In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.

Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414
104 Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride

Authors: Görkem Ülkü, Esin A. Güvel, Nesrin Köken, Nilgün Kızılcan

Abstract:

This study presents synthesis of novel block copolymers of thienyl end capped ethoxylated nonyl phenol and pyrrole via chemical oxidative polymerization. Ethoxylated nonyl phenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENPThC). Then copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. ENP-ThC served both as a macromonomer and an emulsifier for pyrrole with poor solubility in water. The synthesized block copolymers (ENP-ThC-b-PPy) were characterized by spectroscopic analysis and the electrical conductivities were investigated with 4-point probe technique.

Keywords: End capped polymer, ethoxylated nonyl phenol, heterophase polymerization, polypyrrole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
103 Surfactant-Free O/W-Emulsion as Drug Delivery System

Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk

Abstract:

Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.

Keywords: Emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3264
102 Study on the Atomic-Oxygen-Protection Film Preparation of Organic Silicon and Its Properties

Authors: Zheng-Kuohai, Yang-Shengsheng, Li-Zhonghua, Zhao-Lin

Abstract:

Materials used on exterior spacecraft surfaces are subjected to many environmental threats which can cause degradation, atomic oxygen is one of the most threats. We prepared organic silicon atomic-oxygen-protection film using method of polymerization. This paper presented the effects on the film structure and its durability of the preparation processing, and analyzed the polymerization theory, the film structure and composition of the film. At last, we tested the film in our ground based atomic oxygen simulator, and indicated that the film worked well.

Keywords: Atomic oxygen, siloxane, protection, plasma, polymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
101 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: Aqueous emulsion, graphene, nanocomposites, thermal characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
100 Studies on Various Parameters Involved in Conjugation of Starch with Lysine for Excellent Emulsification Properties Using Response Surface Methodology

Authors: Sourish Bhattacharya, Priyanka Singh

Abstract:

The process parameters, starch-water ratio (A, (w/v) %), pH of suspension (B), Temperature(C, °C) and Time (D, hrs.)., were optimized for the preparation of starch-lysine conjugate and studying their effect on stability of emulsions by calculating emulsion stability index using response surface methodology. The optimized conditions are pH 9.0, temperature 60oC, reaction time 6 hrs, starch:water ratio 1:2.5, having emulsion stability index was 0.72.

Keywords: Emulsion stability index, pH of suspension, Starch-water ratio, Temperature, Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
99 Synthesis, Characterization and Impedance Analysis of Polypyrrole/La0.7Ca0.3MnO3 Nanocomposites

Authors: M. G. Smitha, M. V. Murugendrappa

Abstract:

Perovskite manganite La0.7Ca0.3MnO3 was synthesized by Sol-gel method. Polymerization of pyrrole was carried by in-situ polymerization method. The composite of pyrrole (Py)/La0.7Ca0.3MnO3 composite in the presence of oxidizing agent ammonium per sulphate to synthesize polypyrrole (PPy)/La0.7Ca0.3MnO3 (LCM) composite was carried out by the same in-situ polymerization method. The PPy/LCM composites were synthesized with varying compositions like 10, 20, 30, 40, and 50 wt.% of LCM in Py. The surface morphologies of these composites were analyzed by using scanning electron microscope (SEM). The images show that LCM particles are embedded in PPy chain. The impedance measurement of PPy/LCM at different temperature ranges from 30 to 180 °C was studied using impedance analyzer. The study shows that impedance is frequency and temperature dependent and it is found to decrease with increase in frequency and temperature.

Keywords: Polypyrrole, sol gel, impedance, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172
98 Universal Kinetic Modeling of RAFT Polymerization using Moment Equations

Authors: Mehdi Salami-Kalajahi, Pejman Ganjeh-Anzabi, Vahid Haddadi-Asl, Mohammad Najafi

Abstract:

In the following text, we show that by introducing universal kinetic scheme, the origin of rate retardation and inhibition period which observed in dithiobenzoate-mediated RAFT polymerization can be described properly. We develop our model by utilizing the method of moments, then we apply our model to different monomer/RAFT agent systems, both homo- and copolymerization. The modeling results are in an excellent agreement with experiments and imply the validity of universal kinetic scheme, not only for dithiobenzoate-mediated systems, but also for different types of monomer/RAFT agent ones.

Keywords: RAFT Polymerization, Mechanism, Kinetics, Moment Equations, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
97 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yilmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

A quartz crystal microbalance (QCM) nanosensor was developed to detect lysozyme enzyme by functionalizing its gold surface with the attachment of poly(methacroyl-L-phenylalanine) (PMAPA) nanoparticles. PMAPA was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Hydrophobic QCM nanosensor was tested for real time detection of lysozyme enzyme from aqueous solution. The kinetic and affinity studies were determined by using lysozyme solutions with different concentrations. The responses related with mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties. 

 

Keywords: HIC, lysozyme, nanosensor, QCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
96 Preparation of ATO Conductive Particles with Narrow Size Distribution

Authors: Yueying Wu, Fengzhu Lv, Yihe Zhang, Zixian Xu

Abstract:

Antimosy-doped tin oxide (ATO) particles were prepared via chemical coprecipitation and reverse emulsion. The size and size distribution of ATO particles were obviously decreased via reverse microemulsion method. At the relatively high yield the ATO particles were nearly spherical in shape, meanwhile the crystalline structure and excellent conductivity were reserved, which could satisfy the requirement as composite fillers, such as dielectric filler of polyimide film.

Keywords: ATO particle, Conductivity, Distribution, Reverse emulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
95 Properties of MWCNTs/PAN Nanofiber Sheet Prepared from Chemically Modified MWCNTs

Authors: M. Seneewong-Na-Ayuttaya, T. Pongprayoon

Abstract:

The nanofiber sheet of Multiwall Cabon Nanotube (MWCNTs)/Polyacylonitile (PAN) composites was fabricated from electrospun nanofiber. Firstly the surface of MWCNTs was chemically modified, comparing two different techniques consisting of admicellar polymerization and functionalization to improve the dispersion and prevent the aggregation in the PAN matrix. The modified MWCNTs were characterized by the dispersion in dimethylformamide (DMF) solvent, Laser particle size, and FTRaman. Lastly, DSC, SEM and mechanical properties of the nanofiber sheet were examined. The results show that the mechanical properties of the nanofiber sheet prepared from admicellar polymerization-modified MWCNTs were higher than those of the others.

Keywords: Multiwall carbon nanotube, admicellar polymerization, functionalization, nanofiber sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
94 Demulsification of Water-in-Oil Emulsions by Microwave Heating Technology

Authors: Abdurahman H. Nour, Rosli M. Yunus, Azhary. H. Nour

Abstract:

The mechanism of microwave heating is essentially that of dielectric heating. After exposing the emulsion to the microwave Electromagnetic (EM) field, molecular rotation and ionic conduction due to the penetration of (EM) into the emulsion are responsible for the internal heating. To determine the capability of microwave technology in demulsification of crude oil emulsions, microwave demulsification method was applied in a 50-50 % and 20- 80 % water-in-oil emulsions with microwave exposure time varied from 20-180 sec. Transient temperature profiles of water-in-oil emulsions inside a cylindrical container were measured. The temperature rise at a given location was almost horizontal (linear). The average rates of temperature increase of 50-50 % and 20-80 % water-in-oil emulsions are 0.351 and 0.437 oC/sec, respectively. The rate of temperature increase of emulsions decreased at higher temperature due to decreasing dielectric loss of water. These results indicate that microwave demulsification of water-in-oil emulsions does not require chemical additions. Microwave has the potential to be used as an alternative way in the demulsification process.

Keywords: Demulsification, temperature profile, emulsion.Microwave heating, dielectric, volume rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672
93 Rheological Behaviors of Crude Oil in the Presence of Water

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Keywords: Crude oil Algerian, Emulsion, Newtonian, Non- Newtonian, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
92 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: Phase change material, drug release kinetics, double emulsion, microfluidics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
91 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
90 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.

Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
89 Evaluation of Droplet Sizes from Video Images for Metal Working Fluids

Authors: R. Hacıoğlu, A. Genç, B. Bakırcı

Abstract:

Metal working fluids were used in the preparation of oil in water emulsions. The size of oil droplets were evaluated by using the analysis of video images taken from the zeta potential measurements. The evaluated size distributions for emulsions were also tested by microscopic analysis. In addition, emulsion stabilities were discussed depending on electrolyte concentration and pH. The results showed that the stability of oil emulsions was strongly related to pH and the concentration of CaCl2. However, the same dependency was not observed for NaCl.

Keywords: Droplet size distribution, emulsion stability, o/w emulsions, video images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
88 Experimental Study of Light Crude Oil-Water Emulsions

Authors: M. Meriem-Benziane, Sabah A. Abdul-Wahab, H. Zahloul, M. Belhadri

Abstract:

This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.

Keywords: Emulsion, Flow index, Herschel-Bulkley model, Newton model, Oil field, Rheology, Yield stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
87 Ignition Delay Correlation for a Direct Injection Diesel Engine Fuelled with Automotive Diesel and Water Diesel Emulsion

Authors: K.Alkhulaifi, M. Hamdalla

Abstract:

Most of ignition delay correlations studies have been developed in a constant volume bombs which cannot capture the dynamic variation in pressure and temperature during the ignition delay as in real engines. Watson, Assanis et. al. and Hardenberg and Hase correlations have been developed based on experimental data of diesel engines. However, they showed limited predictive ability of ignition delay when compared to experimental results. The objective of the study was to investigate the dependency of ignition delay time on engine brake power. An experimental investigation of the effect of automotive diesel and water diesel emulsion fuels on ignition delay under steady state conditions of a direct injection diesel engine was conducted. A four cylinder, direct injection naturally aspirated diesel engine was used in this experiment over a wide range of engine speeds and two engine loads. The ignition delay experimental data were compared with predictions of Assanis et. al. and Watson ignition delay correlations. The results of the experimental investigation were then used to develop a new ignition delay correlation. The newly developed ignition delay correlation has shown a better agreement with the experimental data than Assanis et. al. and Watson when using automotive diesel and water diesel emulsion fuels especially at low to medium engine speeds at both loads. In addition, the second derivative of cylinder pressure which is the most widely used method in determining the start of combustion was investigated.

Keywords: gnition delay correlation, water diesel emulsion, direct injection diesel engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5757
86 Design of Laboratory Pilot Reactor for Filtering and Separation of Water – oil Emulsions

Authors: Irena Markovska, Nikolai Zaicev, Bogdan Bogdanov, Dimitar Georgiev, Yancho Hristov

Abstract:

The present paper deals with problems related to the possibilities to use fractal systems to solve some important scientific and practical problems connected with filtering and separation of aqueous phases from organic ones. For this purpose a special separator have been designed. The reactor was filled with a porous material with fractal dimension, which is an integral part of the set for filtration and separation of emulsions. As a model emulsion hexadecan mixture with water in equal quantities (1:1) was used. We examined the hydrodynamics of the separation of the emulsion at different rates of submission of the entrance of the reactor.

Keywords: pilot reactor, fractal systems, separation, emulsions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
85 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ)  with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively. 

Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
84 Simulation Design of Separator for the Treatment of Emulsions

Authors: Irena Markovska, Dimitar Rusev, Nikolai Zaicev, Bogdan Bogdanov, Dimitar Georgiev, Yancho Hristov

Abstract:

A prototype model of an emulsion separator was designed and manufactured. Generally, it is a cylinder filled with different fractal modules. The emulsion was fed into the reactor by a peristaltic pump through an inlet placed at the boundary between the two phases. For hydrodynamic design and sizing of the reactor the assumptions of the theory of filtration were used and methods to describe the separation process were developed. Based on this methodology and using numerical methods and software of Autodesk the process is simulated in different operating modes. The basic hydrodynamic characteristics - speed and performance for different types of fractal systems and decisions to optimize the design of the reactor were also defined.

Keywords: fractal systems, reactor, separation, emulsions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
83 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture

Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir

Abstract:

Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.

Keywords: Cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
82 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350