Search results for: emission reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1865

Search results for: emission reduction

1835 Field Emission Properties of Multi-wall Carbon Nanotube Field Emitters using Graphite Tip by Electroporetic Deposition

Authors: Gui Sob Byun, Yang Doo Lee, Kyong Soo Lee, Keun Soo Lee, Sun-Woo Park, Byeong Kwon Ju

Abstract:

We fabricated multi-walled carbon nanotube (MCNT) emitters by an electroporetic deposition (EPD) method using a MCNT-sodium dodecyl sulfate (SDS) suspension. MCNT films were prepared on graphite tip using EPD. We observe field emission properties of MCNT film after heat treatment. Consequently, The MCNT film on graphite tip exhibit good electron emission current.

Keywords: Field emission, Multi-wall carbon-nanotube (MCNT), Electrophoretic deposition (EPD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
1834 Comparative Emission Analysis of Gasoline/LPG Automotive Bifuel Engine

Authors: R.R. Saraf, S.S.Thipse, P.K.Saxena

Abstract:

This paper presents comparative emission study of newly introduced gasoline/LPG bifuel automotive engine in Indian market. Emissions were tested as per LPG-Bharat stage III driving cycle. Emission tests were carried out for urban cycle and extra urban cycle. Total time for urban and extra urban cycle was 1180 sec. Engine was run in LPG mode by using conversion system. Emissions were tested as per standard procedure and were compared. Corrected emissions were computed by deducting ambient reading from sample reading. Paper describes detail emission test procedure and results obtained. CO emissions were in the range of38.9 to 111.3 ppm. HC emissions were in the range of 18.2 to 62.6 ppm. Nox emissions were 08 to 3.9 ppm and CO2 emissions were from 6719.2 to 8051 ppm. Paper throws light on emission results of LPG vehicles recently introduced in Indian automobile market. Objectives of this experimental study were to measure emissions of engines in gasoline & LPG mode and compare them.

Keywords: Gasoline, LPG, Emission, Bifuel, Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3361
1833 Impacts of Biofuels on Air Quality: Northern Portugal Case Study

Authors: Ribeiro I., Tavares A.M., Sá E., Lopes M.

Abstract:

The increased use of biodiesel implies variations on both greenhouse gases and air pollutant emissions. Some studies point out that the use of biodiesel blends on diesel can help in controlling air pollution and promote a reduction of CO2 emissions. Reductions on PM, SO2, VOC and CO emissions are also expected, however NOx emissions may increase, which may potentiate O3 formation. This work aims to assess the impact of the biodiesel use on air quality, through a numerical modeling study, taking the Northern region of Portugal as a case study. The emission scenarios are focused on 2008 (baseline year) and 2020 (target year of Renewable Energy Directive-RED) and on three biodiesel blends (B0, B10 and B20). In a general way the use of biodiesel by 2020 will reduce the CO2 and air pollutants emissions in the Northern Portugal, improving air quality. However it will be in a very small extension.

Keywords: air quality, biodiesel, emission scenarios, RED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1832 Experimental Investigations on the Influence of Properties of Jatropha Biodiesel on Performance, Combustion, and Emission Characteristics of a DI-CI Engine

Authors: P. V. Rao

Abstract:

The aim of the present research work is to investigate the influence of Jatropha biodiesel properties on various characteristics of a direct injection compression ignition engine. The experiments were performed at different engine operating regimes with the injection timing prescribed by the engine manufacturer for diesel fuel. The engine characteristics with Jatropha biodiesel were compared against those obtained using diesel fuel. From the results, it is observed that the biodiesel performance and emissions are lower than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids and the advanced injection caused by the higher bulk modulus (or density) of Jatropha biodiesel Furthermore, the possibility for reduction of NOx emissions without expensive engine modifications (hardware) was investigated. Keeping this in mind, the Jatropha biodiesel was preheated. The experimental results show that the retarded injection timing is necessary when using Jatropha biodiesel in order to reduce NOx emission without worsening other engine characteristics. Results also indicate improved performance with the application of preheated biodiesel. The only penalty for using preheated biodiesel is the increase of smoke (soot).

Keywords: chemical properties, combustion, exhaust emissions, Jatropha biodiesel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3279
1831 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
1830 The Study of Fabricating the Field Emission Lamps with Carbon nano-Materials

Authors: K. J. Chung, C.C.Chiang, Y.M. Liu, N. W. Pu, M. D. Ger

Abstract:

Fabrication and efficiency enhancement of non-mercury, high efficiency and green field emission lamps using carbon nano-materials such as carbon nanotubes as cathode field emitters was studied. Phosphor was coated on the ITO glass or metal substrates as the anode. The luminescence efficiency enhancement was carried out by upgrading the uniform of the emitters, improving electron and thermal conductivity of the phosphor and the optimization of the design of different cathode/anode configurations. After evaluation of the aforementioned parameters, the luminescence efficiency of the field emission lamps was raised.

Keywords: Field emission lamps, carbon nano-materials, luminescence efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1829 Methane versus Carbon Dioxide: Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO2) has dominated the discussion around the causes of climate change. This is a reflection of a 100-year time horizon for all greenhouse gases that became a norm.  The 100-year time horizon is much too long – and yet, almost all mitigation efforts, including those set in the near-term frame of within 30 years, are still geared toward it. In this paper, we show that for a 30-year time horizon, methane (CH4) is the greenhouse gas whose radiative forcing exceeds that of CO2. In our analysis, we use the radiative forcing of greenhouse gases in the atmosphere, because they directly affect the rise in temperature on Earth. We found that in 2019, the radiative forcing (RF) of methane was ~2.5 W/m2 and that of carbon dioxide was ~2.1 W/m2. Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m2 and ~3.1 W/m2 respectively. There is a substantial spread in the data for anthropogenic and natural methane (CH4) emissions, along with natural gas, (which is primarily CH4), leakages from industrial production to consumption. For this reason, we estimate the minimum and maximum effects of a reduction of these leakages, and assume an effective immediate reduction by 80%. Such action may serve to reduce the annual radiative forcing of all CH4 emissions by ~15% to ~30%. This translates into a reduction of RF by 2050 from ~2.8 W/m2 to ~2.5 W/m2 in the case of the minimum effect that can be expected, and to ~2.15 W/m2 in the case of the maximum effort to reduce methane leakages. Under the BAU, we find that the RF of CO2 will increase from ~2.1 W/m2 now to ~3.1 W/m2 by 2050. We assume a linear reduction of 50% in anthropogenic emission over the course of the next 30 years, which would reduce the radiative forcing of CO2 from ~3.1 W/m2 to ~2.9 W/m2. In the case of "net zero," the other 50% of only anthropogenic CO2 emissions reduction would be limited to being either from sources of emissions or directly from the atmosphere. In this instance, the total reduction would be from ~3.1 W/m2 to ~2.7 W/m2, or ~0.4 W/m2. To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m2, an additional reduction of radiative forcing of CO2 would be approximately 2.7 -2.15 = 0.55 W/m2. In total, one would need to remove ~660 GT of CO2 from the atmosphere in order to match the maximum reduction of current methane leakages, and ~270 GT of CO2 from emitting sources, to reach "negative emissions". This amounts to over 900 GT of CO2.

Keywords: Methane Leakages, Methane Radiative Forcing, Methane Mitigation, Methane Net Zero.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
1828 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System

Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain

Abstract:

Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.

Keywords: CO2 emission, IoT, EDA, Weighted Sum Model, WSM, regression, smart parking system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
1827 The Role of Heat Pumps for the Decarbonization of European Regions

Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato

Abstract:

This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.

Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114
1826 Microkinetic Modelling of NO Reduction on Pt Catalysts

Authors: Vishnu S. Prasad, Preeti Aghalayam

Abstract:

The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N2O is detected in some ranges of operating conditions, whereas the effect of inlet O2% causes a number of changes in the feasible regimes of operation.

Keywords: Microkinetic modelling, NOx, Pt on alumina catalysts, selective catalytic reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
1825 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models

Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla

Abstract:

Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.

Keywords: CMB, GIS, AERMOD, PM2.5, fugitive, emission inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
1824 Combustion and Emission Characteristics in a Can-type Combustion Chamber

Authors: Selvakuma Kumaresh, Man Young Kim

Abstract:

Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature.

Keywords: Combustion, Emission, Can-type Combustion Chamber, CFD, Motility of Holes, Swirl Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
1823 Diagnostics of Fatigue Damage of Gas Turbine Engine Blades by Acoustic Emission Method

Authors: A.Urbach, M. Banov, V. Turko, Y.Feshchuk

Abstract:

the work contains the results of complex investigation related to the evaluation of condition of working blades of gas turbine engines during fatigue tests by applying the acoustic emission method. It demonstrates the possibility of estimating the fatigue damage of blades in the process of factory tests. The acoustic emission criteria for detecting and testing the kinetics of fatigue crack distribution were detected. It also shows the high effectiveness of the method for non-destructive testing of condition of solid and cooled working blades for high-temperature gas turbine engines.

Keywords: acoustic emission, blades for gas turbine engines, fatigue damage, diagnostics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
1822 Impact of Loading Conditions on the Emission- Economic Dispatch

Authors: M. R. Alrashidi, M. E. El-Hawary

Abstract:

Environmental awareness and the recent environmental policies have forced many electric utilities to restructure their operational practices to account for their emission impacts. One way to accomplish this is by reformulating the traditional economic dispatch problem such that emission effects are included in the mathematical model. This paper presents a Particle Swarm Optimization (PSO) algorithm to solve the Economic- Emission Dispatch problem (EED) which gained recent attention due to the deregulation of the power industry and strict environmental regulations. The problem is formulated as a multi-objective one with two competing functions, namely economic cost and emission functions, subject to different constraints. The inequality constraints considered are the generating unit capacity limits while the equality constraint is generation-demand balance. A novel equality constraint handling mechanism is proposed in this paper. PSO algorithm is tested on a 30-bus standard test system. Results obtained show that PSO algorithm has a great potential in handling multi-objective optimization problems and is capable of capturing Pareto optimal solution set under different loading conditions.

Keywords: Economic emission dispatch, economic cost dispatch, particle swarm, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
1821 Oil Refineries Emissions: Source and Impact: A Study using AERMOD

Authors: Amir. AL-Haddad, Hisham. Ettouney, Samiya. Saqer

Abstract:

The main objectives of this paper are to measure pollutants concentrations in the oil refinery area in Kuwait over three periods during one year, obtain recent emission inventory for the three refineries of Kuwait, use AERMOD and the emission inventory to predict pollutants concentrations and distribution, compare model predictions against measured data, and perform numerical experiments to determine conditions at which emission rates and the resulting pollutant dispersion is below maximum allowable limits.

Keywords: Emissions, ISCST3 model, Modeling, Pollutants, Refinery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
1820 Aerodynamic Analysis of Dimple Effect on Aircraft Wing

Authors: E. Livya, G. Anitha, P. Valli

Abstract:

The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s and 60m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favors the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.

Keywords: Airfoil, Boundary layer, Dimple effect, Flow separation, Stall reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6097
1819 Influencing of Rice Residue Management Method on GHG Emission from Rice Cultivation

Authors: Cheewaphongphan P., Garivait S., Pongpullponsak A., Patumsawad S.

Abstract:

Thailand is one of the world-s leaders of rice producers and exporters. Farmers have to increase the rice cultivation frequency for serving the national increasing of export-s demand. It leads to an elimination of rice residues by open burning which is the quickest and costless management method. The open burning of rice residue is one of the major causes of air pollutants and greenhouse gas (GHG) emission. Under ASEAN agreement on trans-boundary haze, Thailand set the master plan to mitigate air pollutant emission from open burning of agricultural residues. In this master plan, residues incorporation is promoted as alternative management method to open burning. However, the assessment of both options in term of GHG emission in order to investigate their contribution to long-term global warming is still scarce or inexistent. In this study, a method on rice residues assessment was first developed in order to estimate and compare GHG emissions from rice cultivation under rice residues open burning and the case with incorporation of the same amount of rice residues, using 2006 IPCC guidelines for emission estimation and Life Cycle Analysis technique. The emission from rice cultivation in different preparing area practice was also discussed.

Keywords: Greenhouse gases, Incorporation, Rice cultivation, Rice field residue, Rice residue management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3178
1818 A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

Authors: Pin-Hsu Kao, Wen-Shou Tseng, Hung-Ming Tai, Yuan-Ming Chang, Jenh-Yih Juang

Abstract:

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Keywords: Biomimetics, quasi-beehive Si, SiGe nanoislands, platinum nanopillars, field emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
1817 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting

Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh

Abstract:

In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).

Keywords: Windrow, swine manure, ammonia, nitrous oxide, fluxes, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
1816 Effects of Engine Parameters and Fuel Compositions on Ignition Timing and Emission Characteristics of HCCI Engine

Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed

Abstract:

In this research, the effects of the engine parameters like compression ratios and steam injection on igniting timing and emission characteristics have been investigated numerically. The in-cylinder temperature and pressure at four different compression ratios have been compared with numerical results, and they show a good agreement with the published data. Two different fuels have been used in this study: Isooctane (IC8H18), and ethanol (C2H5OH). The increasing of the compression ratio (CR) advances the ignition timing, decreases the burn duration and increases the temperature and the pressure. The injection of water vapor lower than 40% decreased the peak temperature and slowed the combustion rate which leads to a lower NOx emission.

Keywords: Compression ratio, emission, HCCI engine, ignition timing, steam injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1815 Effect of Inlet Valve Variable Timing in the Spark Ignition Engine on Achieving Greener Transport

Authors: Osama H. Ghazal, Yousef S. Najjar, Kutaeba J. AL-Khishali

Abstract:

The current emission legislations and the large concern about the environment produced very numerous constraints on both governments and car manufacturers. Also the cost of energy increase means a reduction in fuel consumption must be met, without largely affecting the current engine production and performance. It is the intension to contribute towards the development and pursuing, among others on variable valve timing (VVT), for improving the engine performance. The investigation of the effect of (IVO) and (IVC) to optimize engine torque and volumetric efficiency for different engine speeds was considered. Power, BMEP and BSFC were calculated and presented to show the effect of varying inlet valve timing on them for all cases. A special program used to carry out the calculations. The analysis of the results shows that the reduction of 10% of (IVO) angle gave an improvement of around 1.3% in torque, BSFC, and volumetric efficiency, while a 10% decrease in (IVC) caused a 0.1% reduction in power, torque, and volumetric efficiency.

 

Keywords: Green transportation, inlet valve variable timing, performance, spark ignition engines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
1814 Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process

Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana

Abstract:

Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's post hoc test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with F-values (12.37 and 31.88) greater than Fcrit (6.94) in contrary to carbon dioxide emission (F-values of 1.23 and 3.12 were less than Fcrit).  Scheffe's post hoc test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission.

Keywords: Analysis of variance, carbon dioxide, carbon monoxide, photocopying indoor, Scheffe's test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1813 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract:

Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
1812 Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch

Authors: Ming-Tang Tsai, Chih-Wei Yen

Abstract:

In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.

Keywords: Interactive Compromise Approach, Emission Control, Economic Dispatch, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
1811 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils

Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole

Abstract:

The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.

Keywords: Esters, emission, performance, and vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1810 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this research, intended for concrete products for the construction materials, by using the LCA method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low carbon technologies of the future.

Keywords: CO2 Emissions, CO2 Reduction, Ready-mixed Concrete, Environmental Impact Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
1809 Pollution Control and Sustainable Urban Transport System - Electric Vehicle

Authors: M.M. Al Emran Hasan, M.Ektesabi, A.Kapoor

Abstract:

Recently electric vehicles are becoming popular as an alternative of conventional fossil fuel vehicles. Conventional Internal Combustion Engine (ICE) vehicle uses fossil fuel which contributing a major part of overall carbon emission in the environment. Carbon and other green house gas emission are responsible for global warming and resulting climate change. It becomes vital to evaluate performance of vehicle based on emission. In this paper an effort has been made to depict the picture of emission caused by vehicle and scenario of Australia has taken into account. Effort has been made to compare the fossil based vehicle with electric vehicle in phases. The study also evaluates advancement in electric vehicle technology, required infrastructure for sustainability and future scope of developments. This paper also includes the evaluation of electric vehicle concept for pollution control and sustainable transport systems in future. This study can be a benchmark for development of electric vehicle as low carbon emission alternative for the cities of tomorrow.

Keywords: Electric Vehicle, Fossil Fuel, Internal CombustionEngine, Green House Gas, In wheel motor, Smart grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
1808 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1807 Numerical Predictionon the Influence of Mixer on the Performance of Urea-SCR System

Authors: Kyoungwoo Park, Chol-Ho Hong, Sedoo Oh, Seongjoon Moon

Abstract:

Diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filtersin order to meet more stringer diesel emission standard. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the Urea-SCR device for diesel passenger cars and light duty vehicles. In the present study, the effects of the mixer on the efficiency of urea-SCR System (i.e., NH3uni- formityindex (NH3 UI) is investigated by predicting the transport phenomena in the urea-SCR system. The three dimensional Eulerian-Lagrangian CFD simulationfor internal flow and spray characteristics in front of SCR is carried out by using STAR-CCM+ 7.06 code. In addition, the paper proposes a method to minimize the wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading.

Keywords: Computational fluid dynamics, Multi-phase flow, NH3 uniformity index, Urea-SCR system, Urea-water-solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3599
1806 Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming

Authors: Michael Todinov, Eberechi Weli

Abstract:

The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expressed as integer number), the worst-case running time of the proposed algorithm is O (n x (B+1)), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry. 

Keywords: Optimisation, railway risk reduction, budget constraints, dynamic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132