Search results for: business process management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7961

Search results for: business process management

101 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO hydro-deoxygenation, DFT, liquid fuels, XPS, XTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
100 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement

Authors: Fiona Wahr, Sitalakshmi Venkatraman

Abstract:

Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.

Keywords: Enabling skills, student retention, embedded learning support, continuous improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
99 Frequency Response of Complex Systems with Localized Nonlinearities

Authors: E. Menga, S. Hernandez

Abstract:

Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.

Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
98 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
97 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
96 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece

Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris

Abstract:

Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.

Keywords: Chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3441
95 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
94 Media Facades Utilization for Sustainable Tourism Promotion in Historic Places: Case Study of the Walled City of Famagusta, North Cyprus

Authors: Nikou Javadi, Uğur Dağlı

Abstract:

The importance of culture and tourism in the attractiveness and competitiveness of the countries is central, and many regions are evidencing their cultural assets, tangible and intangible, as a means to create comparative advantages in tourism and produce a distinctive place in response to the pressures of globalization. Culture and tourism are interlinked because of their obvious combination and growth potential. Cultural tourism is a crucial global tourism market with fast growing. Regions can develop significant relations between culture and tourism to increase their attractiveness as places to visit, live and invest, increasing their competitiveness. Accordingly, having new and creative approach to historical areas as cultural value-based destinations can improve their conditions to promote tourism. Furthermore, in 21st century, media become the most important factor affecting the development of urban cities, including public places. As a result of the digital revolution, re-imaging and re-linkage public places by media are essential to create more interactions between public spaces and users, interaction media display, and urban screens, one of the most important defined media. This interaction can transform the urban space from being neglected to be more interactive space with users, especially the pedestrians. The paper focuses on The Walled City of Famagusta. As many other historic quarters elsewhere in the world, is in a process, of decay and deterioration, and its functionally distinctive areas are severely threatened by physical, functional, locational, and image obsolescence at varying degrees. So the focus on the future development of this area through tourism promotion can be an appropriate decision for the monument enhancement of the spatial quality in Walled City of Famagusta. In this paper, it is aimed to identify the effects of these new digital factors to transform public spaces especially in historic urban areas to promote creative tourism. Accordingly, two different analysis methods are used as well as a theoretical review. The first is case study on site and the second is Close ended questionnaire, test many concepts raised in this paper. The physical analysis on site carried out in order to evaluate the walled city restoration for touristic purpose. Besides, theoretical review is done in order to provide background to the subject and cleared Factors to attract tourists.

Keywords: Historical areas, Media Facade, Sustainable tourism, Walled city of Famagusta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
93 Designing a Rescue System for Earthquake-Stricken Area with the Aim of Facilitation and Accelerating Accessibilities (Case Study: City of Tehran)

Authors: Naeleh Motamedi, Masoud Mahmoudkhan Shirazi, Nima Nouraei

Abstract:

Natural disasters, including earthquake, kill many people around the world every year. Society rescue actions, which start after the earthquake and are called LAST in abbreviation, include locating, access, stabilization and transportation. In the present article, we have studied the process of local accessibility to the injured and transporting them to health care centers. With regard the heavy traffic load due to earthquake, the destruction of connecting roads and bridges and the heavy debris in alleys and street, which put the lives of the injured and the people buried under the debris in danger, accelerating the rescue actions and facilitating the accessibilities are of great importance, obviously. Tehran, the capital of Iran, is among the crowded cities in the world and is the center of extensive economic, political, cultural and social activities. Tehran has a population of about 9.5 millions and because of the immigration of people from the surrounding cities. Furthermore, considering the fact that Tehran is located on two important and large faults, a 6 Richter magnitude earthquake in this city could lead to the greatest catastrophe during the entire human history. The present study is a kind of review and a major part of the required information for it, has been obtained from libraries all of the rescue vehicles around the world, including rescue helicopters, ambulances, fire fighting vehicles and rescue boats, and their applied technology, and also the robots specifically designed for the rescue system and the advantages and disadvantages of them, have been investigated. The studies show that there is a significant relationship between the rescue team-s arrival time at the incident zone and the number of saved people; so that, if the duration of burial under debris 30 minutes, the probability of survival is %99.3, after a day is %81, after 2days is %19 and after 5days is %7.4. The exiting transport systems all have some defects. If these defects are removed, more people could be saved each hour and the preparedness against natural disasters is increased. In this study, transport system has been designed for the rescue team and the injured; which could carry the rescue team to the incident zone and the injured to the health care centers. In addition, this system is able to fly in the air and move on the earth as well; so that the destruction of roads and the heavy traffic load could not prevent the rescue team from arriving early at the incident zone. The system also has the equipment required firebird for debris removing, optimum transport of the injured and first aid.

Keywords: earthquake, accelerating, accessibilities transportation, rescue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
92 Impact of Liquidity Crunch on Interbank Network

Authors: I. Lucas, N. Schomberg, F-A. Couturier

Abstract:

Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced.

Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.

Keywords: Systemic Risk, Financial Contagion, Liquidity Risk, Interbank Market, Network Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
91 A Development of English Pronunciation Using Principles of Phonetics for English Major Students at Loei Rajabhat University

Authors: Pongthep Bunrueng

Abstract:

This action research accentuates the outcome of a development in English pronunciation, using principles of phonetics for English major students at Loei Rajabhat University. The research is split into 5 separate modules: 1) Organs of Speech and How to Produce Sounds, 2) Monopthongs, 3) Diphthongs, 4) Consonant sounds, and 5) Suprasegmental Features. Each module followed a 4 step action research process, 1) Planning, 2) Acting, 3) Observing, and 4) Reflecting. The research targeted 2nd year students who were majoring in English Education at Loei Rajabhat University during the academic year of 2011. A mixed methodology employing both quantitative and qualitative research was used, which put theory into action, taking segmental features up to suprasegmental features. Multiple tools were employed which included the following documents: pre-test and post-test papers, evaluation and assessment papers, group work assessment forms, a presentation grading form, an observation of participants form and a participant self-reflection form.

All 5 modules for the target group showed that results from the post-tests were higher than those of the pre-tests, with 0.01 statistical significance. All target groups attained results ranging from low to moderate and from moderate to high performance. The participants who attained low to moderate results had to re-sit the second round. During the first development stage, participants attended classes with group participation, in which they addressed planning through mutual co-operation and sharing of responsibility. Analytic induction of strong points for this operation illustrated that learner cognition, comprehension, application, and group practices were all present whereas the participants with weak results could be attributed to biological differences, differences in life and learning, or individual differences in responsiveness and self-discipline.

Participants who were required to be re-treated in Spiral 2 received the same treatment again. Results of tests from the 5 modules after the 2nd treatment were that the participants attained higher scores than those attained in the pre-test. Their assessment and development stages also showed improved results. They showed greater confidence at participating in activities, produced higher quality work, and correctly followed instructions for each activity. Analytic induction of strong and weak points for this operation remains the same as for Spiral 1, though there were improvements to problems which existed prior to undertaking the second treatment.

Keywords: Action research, English pronunciation, phonetics, segmental features, suprasegmental features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
90 Brazilian Constitution and the Fundamental Right to Sanitation

Authors: Michely Vargas Delpupo, José Geraldo Romanello Bueno

Abstract:

The right to basic sanitation, was elevated to the category of fundamental right by the Constitution of 1988 to protect the ecologically balanced environment, ensuring social rights to health and adequate housing and put the dignity of the human person as the foundation of the Brazilian Democratic State. Before their essentiality to humans, this article seeks to understand why universal access to basic sanitation is a goal so difficult to achieve in Brazil. Therefore, this research uses the deductive and analytical method. Given the nature of the research literature, research techniques were centered in specialized books on the subject, journals, theses and dissertations, laws, relevant law case and raising social indicators relating to the theme. The relevance of the topic stems, among other things, the fact that sanitation services are essential for a dignified life, i.e., everyone is entitled to the maintenance of the necessary existence conditions are satisfied. However, the effectiveness of this right is undermined in society, since Brazil has huge deficit in sanitation services, denying thus a worthy life to most of the population. Thus, it can be seen that the provision of water and sewage services in Brazil is still characterized by a large imbalance, since the municipalities with lower population index have greater disability in the sanitation service. The truth is that the precariousness of water and sewage services in Brazil is still very concentrated in the North and Northeast regions, limiting the effective implementation of the Law 11.445/2007 in the country. Therefore, there is urgent need for a positive service by the State in the provision of sanitation services in order to prevent and control disease, improve quality of life and productivity of individuals, besides preventing contamination of water resources. More than just social and economic necessity, there is a government duty to implement such services. In this sense, given the current scenario, to achieve universal access to basic sanitation imposes many hurdles. These are mainly in the field of properly formulated and implemented public policies, i.e., it requires an excellent institutional organization, management services, strategic planning, social control, in order to provide answers to complex challenges.

Keywords: Fundamental rights, sanitation, universal access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
89 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
88 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: Brine disposal, desalination, field study, inclined dense jets, negatively buoyant discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
87 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz

Abstract:

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
86 Power and Delay Optimized Graph Representation for Combinational Logic Circuits

Authors: Padmanabhan Balasubramanian, Karthik Anantha

Abstract:

Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.

Keywords: AND-Inverter Graph, OR-Inverter Graph, DirectedAcyclic Graph, Low power design, Delay optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
85 Education and Assessment of Civil Employees in e-Government: The Case of a Moodle Based Platform

Authors: Stamatios A. Theocharis, George A. Tsihrintzis

Abstract:

One of the most important factors for the success of e-government is training and preparing the workforce of the public sector. As changes and innovation in the public sector progress at a very slow pace and more slowly than in the private sector, issues related to human resources require special care. This is because the workforce will eventually seize the opportunities of the technological solutions used in e-Government. Thus, the central administration should provide employees with continuous and focused training not only on new technologies but also on a wide range of subjects and also improve interdepartmental interaction.

To achieve all this, new methods and training tools need to be implemented in addition to assessment of the employees. In this spirit, we propose the development of an educational platform with user personalization features. We propose the development of this platform using Moodle as the basic tool. Incorporating a personalization mechanism is very important since different employees have different backgrounds, education levels, computer skills, or different capability to develop further. Key features of the proposed platform include, besides typical e-learning tools, communities organized in order to exchange experiences and knowledge, groups of users based on certain criteria, automatic evaluation of users and potential self-education and self-assessment. In its fully developed form, this platform can be part of a more comprehensive knowledge management system for the public sector.

Keywords: e-Government, civil employees education, education technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
84 The Potential of ‘Comprehensive Assessment System for Built Environment Efficiency for Cities’ in Developing Country: Evidence of Myanmar

Authors: Theingi Shwe, Riken Homma, Kazuhisa Iki, Juko Ito

Abstract:

The growing cities of the developing country are characterized by rapid growth and poor infrastructure management inviting and accelerating relative environmental problems. Even though the movements of the sustainability had already been developed around the world, it is still increasing in the developing countries to plant sustainable practices. Aligned with the sustainable development actions, many sustainable assessment tools are also developed to rate and evaluate the sustainability performances through the building to community level. Among them, CASBEE is developed by Japanese organizations and is recognized as one of the international well-known assessment tools. The main purpose of the study is to find out the potential of CASBEE tool reflecting sustainability city level performances in developing countries. The research framework was designed with three major phases: Quantitative Approach, Qualitative Approach and Evaluation Reflection. The first two approaches were based on the investigation of tool’s contents and indicators by means of three sustainable dimensions and sustainability categories. To know the reality and reflection on developing country, Pathein City from Myanmar was selected and evaluated by 2012 version of CASBEE for Cities. The evaluation practices went through assigned indicators and the evaluation outcome presents the performances of Pathein city’s environmental efficiency as a very good in current conditions. The results of this study indicate that the indicators of this tool have balance coverage among three dimensions of sustainability but it has not yet counted enough for some indicators like location, infrastructure and institution which are relative to society dimension. In the developing countries’ cities, the most critical issues on development such as affordable housing and heritage preservation which are already planted in Pathein City but the tool does not account for those issues. Moreover, in some of the indicators, the benchmark and the weighting coefficient are strongly linked to the system birth region. By means of this study, it can be stated that CASBEE for Cities would be potential for delivering sustainable city level development in developing country especially in Myanmar along with further inclusion of the indicators.

Keywords: Assessment tool, CASBEE, developing country, Myanmar, Pathein city, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
83 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
82 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
81 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively recent concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This is clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification, cellular connectivity, connectivity to the vehicle computer, and connectivity to analog and digital sensors by means of a specially targeted design of expansion board. Specifically, the latter offers a number of adaptability features to cope with the diverse sensor types employed in different vehicles. In standard mode, the IoT sensor node communicates to the data center through cellular network, transmitting all digital/digitized sensor data, IoT device identity and position. Moreover, the proposed IoT sensor node offers connectivity, through WiFi and an appropriate application, to smart phones or tablets allowing the registration of additional vehicle- and driver-specific information and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware.

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
80 Conflation Methodology Applied to Flood Recovery

Authors: E. L. Suarez, D. E. Meeroff, Y. Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: Community resilience, conflation, flood risk, nuisance flooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59
79 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contain four obvious stages and the main decomposition reaction occurred in the range of 200-600 °C. Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2 and 3 were in the range of 6.67-20.37 kJ/mol for SS; 1.51-6.87 kJ/mol for HZSM5; and 2.29-9.17 kJ/mol for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1 and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with HZSM5 and AC were in the total range of C4-C17 with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds while the presence of HZSM5 and AC dropped to 7.3% and 13.02%, respectively. Meanwhile, generation of value-added chemicals such as light aromatic compounds were significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR and TGA techniques. Overall, this research demonstrated that AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: Activated char, bio-oil, catalytic pyrolysis, HZSM5, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
78 Convention Refugees in New Zealand: Being Trapped in Immigration Limbo Without the Right to Obtain a Visa

Authors: Saska Alexandria Hayes

Abstract:

Multiple Convention Refugees in New Zealand are stuck in a state of immigration limbo due to a lack of defined immigration policies. The Refugee Convention of 1951 does not give the right to be issued a permanent right to live and work in the country of asylum. A gap in New Zealand's immigration law and policy has left Convention Refugees without the right to obtain a resident or temporary entry visa. The significant lack of literature on this topic suggests that the lack of visa options for Convention Refugees in New Zealand is a widely unknown or unacknowledged issue. Refugees in New Zealand enjoy the right of non-refoulement contained in Article 33 of the Refugee Convention 1951, whether lawful or unlawful. However, a number of rights contained in the Refugee Convention 1951, such as the right to gainful employment and social security, are limited to refugees who maintain lawful immigration status. If a Convention Refugee is denied a resident visa, the only temporary entry visa a Convention Refugee can apply for in New Zealand is discretionary. The appeal cases heard at the Immigration Protection Tribunal establish that Immigration New Zealand has declined resident and discretionary temporary entry visa applications by Convention Refugees for failing to meet the health or character immigration instructions. The inability of a Convention Refugee to gain residency in New Zealand creates a dependence on the issue of discretionary temporary entry visas to maintain lawful status. The appeal cases record that this reliance has led to Convention Refugees' lawful immigration status being in question, temporarily depriving them of the rights contained in the Refugee Convention 1951 of lawful refugees. In one case, the process of applying for a discretionary temporary entry visa led to a lawful Convention Refugee being temporarily deprived of the right to social security, breaching Article 24 of the Refugee Convention 1951. The judiciary has stated a constant reliance on the issue of discretionary temporary entry visas for Convention Refugees can lead to a breach of New Zealand's international obligations under Article 7 of the International Covenant on Civil and Political Rights. The appeal cases suggest that, despite successful judicial proceedings, at least three persons have been made to rely on the issue of discretionary temporary entry visas potentially indefinitely. The appeal cases establish that a Convention Refugee can be denied a discretionary temporary entry visa and become unlawful. Unlawful status could ultimately breach New Zealand's obligations under Article 33 of the Refugee Convention 1951 as it would procedurally deny Convention Refugees asylum. It would force them to choose between the right of non-refoulement or leaving New Zealand to seek the ability to access all the human rights contained in the Universal Declaration of Human Rights elsewhere. This paper discusses how the current system has given rise to these breaches and emphasizes a need to create a designated temporary entry visa category for Convention Refugees.

Keywords: Domestic policy, immigration, migration, New Zealand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41
77 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
76 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
75 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: Electrochemical remediation, pollution, soil contamination, total petroleum hydrocarbons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
74 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: Landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787
73 Faculty-Industry R&D Joint Ventures: Barriers VS Incentives for Developing Nations

Authors: Muhammad Fiaz, Baseerat Rizwan, Naqvi Najam Abbas, Yang Naiding

Abstract:

The aspiration of this research article is to target and focus the gains of university-Industry (U-I) collaborations and exploring those hurdles which are the obstacles for attaining these gains. University-Industry collaborations have attained great importance since 1980 in USA due to its application in all fields of life. U-I collaboration is a bilateral process where academia is a proactive member to make such alliances. Universities want to ameliorate their academic-base with the technicalities of technobabbles. U-I collaboration is becoming an essential lane for achieving innovative goals in this century. Many developed nations have set successful examples to prove this phenomenon as a catalyst to reduce costs, efforts and personnel for R&D projects. This study is exploits amplitudes of UI collaboration incentives in the light of success stories of developed countries. Many universities in USA, UK, Canada and various European Countries have been engaged with enterprises for numerous collaborative agreements. A long list of strategic and short term R&D projects has been executed in developed countries to accomplish their intended purposes. Due to the lack of intentions, genuine research and research-oriented environment, the mentioned field could not grow very well in developing countries. During last decade, a new wave of research has induced the institutes of developing countries to promote R&D culture especially in Pakistan. Higher Education Commission (HEC) has initiated many projects and funding supports for universities which have collaborative intentions with industry. Findings show that rapid innovation, overwhelm the technological complexities and articulated intellectual-base are major incentives which steer both partners to establish faculty-industry alliances. Everchanging technologies, concerned about intellectual property, different research environment and culture, research relevancy (Basic or applied), exposure differences and diversity of knowledge (bookish or practical) are main barriers to establish and retain joint ventures. Findings also concluded that, it is dire need to support and enhance cooperation among academia and industry to promote highly coordinated research behaviors. Author has proposed a roadmap for developing countries to promote R&D clusters among faculty and industry to deal the technological challenges and innovation complexities. Based on our research findings, Model for R&D Collaboration for developing countries also have been proposed to promote articulated R&D environment. If developing countries follow this phenomenon, rapid innovations can be achieved with limited R&D budget heads.

Keywords: University-Industry Collaboration, Academia, Innovation, R&D Barriers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
72 Achieving Design-Stage Elemental Cost Planning Accuracy: Case Study of New Zealand

Authors: Johnson Adafin, James O. B. Rotimi, Suzanne Wilkinson, Abimbola O. Windapo

Abstract:

An aspect of client expenditure management that requires attention is the level of accuracy achievable in design-stage elemental cost planning. This has been a major concern for construction clients and practitioners in New Zealand (NZ). Pre-tender estimating inaccuracies are significantly influenced by the level of risk information available to estimators. Proper cost planning activities should ensure the production of a project’s likely construction costs (initial and final), and subsequent cost control activities should prevent unpleasant consequences of cost overruns, disputes and project abandonment. If risks were properly identified and priced at the design stage, observed variance between design-stage elemental cost plans (ECPs) and final tender sums (FTS) (initial contract sums) could be reduced. This study investigates the variations between design-stage ECPs and FTS of construction projects, with a view to identifying risk factors that are responsible for the observed variance. Data were sourced through interviews, and risk factors were identified by using thematic analysis. Access was obtained to project files from the records of study participants (consultant quantity surveyors), and document analysis was employed in complementing the responses from the interviews. Study findings revealed the discrepancies between ECPs and FTS in the region of -14% and +16%. It is opined in this study that the identified risk factors were responsible for the variability observed. The values obtained from the analysis would enable greater accuracy in the forecast of FTS by Quantity Surveyors. Further, whilst inherent risks in construction project developments are observed globally, these findings have important ramifications for construction projects by expanding existing knowledge on what is needed for reasonable budgetary performance and successful delivery of construction projects. The findings contribute significantly to the study by providing quantitative confirmation to justify the theoretical conclusions generated in the literature from around the world. This therefore adds to and consolidates existing knowledge.

Keywords: Accuracy, design-stage, elemental cost plan, final tender sum, New Zealand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748