Search results for: air traffic controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1366

Search results for: air traffic controller

1186 Optimal Controller with Backstepping and BELBIC for Single-Link Flexible Manipulator

Authors: Ali Reza Sahab, Amir Gholami Pastaki

Abstract:

In this paper, backstepping method (BM) is proposed for a single-link flexible mechanical manipulator. In each step of this method a positive value is obtained. Selections of the gain factor values are very important because controller will have different behavior for each different set of values. Improper selection of these gains can lead to instability of the system. In order to choose proper values for gains BELBIC method has been used in this work. Finally, to prove the efficiency of this method, the obtained results of proposed model are compared with robust controller one. Results show that the combination of backstepping and BELBIC that is presented here, can stabilized the system with higher speed, shorter settling time and lower overshoot in than robust controller.

Keywords: single-link flexible manipulator, backstepping, BELBIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
1185 A Traffic Simulation Package Based on Travel Demand

Authors: Tuong Huan Nguyen, Quoc Bao Vo, Hai L. Vu

Abstract:

In this paper we propose a new traffic simulation package, TDMSim, which supports both macroscopic and microscopic simulation on free-flowing and regulated traffic systems. Both simulators are based on travel demands, which specify the numbers of vehicles departing from origins to arrive at different destinations. The microscopic simulator implements the carfollowing model given the pre-defined routes of the vehicles but also supports the rerouting of vehicles. We also propose a macroscopic simulator which is built in integration with the microscopic simulator to allow the simulation to be scaled for larger networks without sacrificing the precision achievable through the microscopic simulator. The macroscopic simulator also enables the reuse of previous simulation results when simulating traffic on the same networks at later time. Validations have been conducted to show the correctness of both simulators.

Keywords: Macroscopic, Microscopic, Simulation, Traffic, Travel demand, Fundamental diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1184 An Area-Efficient and Low-Power Digital Pulse-Width Modulation Controller for DC-DC Switching Power Converter

Authors: Jingjing Lan, Jun Zhou, Xin Liu

Abstract:

In this paper, a low-power digital controller for DC-DC power conversion was presented. The controller generates the pulse-width modulated (PWM) signal from digital inputs provided by analog-to-digital converter (ADC). An efficient and simple design scheme to develop the control unit was discussed. This method allows minimization of the consumed resources of the chip and it is based on direct digital design approach. In this application, with the proposed scheme, nearly half area and two-third of the power consumption was saved compared to the conventional schemes. This work illustrates the possibility of implementing low-power and area-efficient power management circuit using direct digital design based approach. 

Keywords: Buck converter, DC-DC power conversion, digital control, proportional-integral (PI) controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
1183 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari

Abstract:

Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.

Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
1182 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1181 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG

Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi

Abstract:

In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.

Keywords: Wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
1180 Application of AIMSUN Microscopic Simulation Model in Evaluating Side Friction Impacts on Traffic Stream Performance

Authors: H. Naghawi, M. Abu Shattal, W. Idewu

Abstract:

Side friction factors can be defined as all activities taking place at the side of the road and within the traffic stream, which would negatively affect the traffic stream performance. If the effect of these factors is adequately addressed and managed, traffic stream performance and capacity could be improved. The main objective of this paper is to identify and assess the impact of different side friction factors on traffic stream performance of a hypothesized urban arterial road. Hypothetical data were assumed mainly because there is no road operating under ideal conditions, with zero side friction, in the developing countries. This is important for the creation of the base model which is important for comparison purposes. For this purpose, three essential steps were employed. Step one, a hypothetical base model was developed under ideal traffic and geometric conditions. Step two, 18 hypothetical alternative scenarios were developed including side friction factors such as on-road parking, pedestrian movement, and the presence of trucks in the traffic stream. These scenarios were evaluated for one, two, and three lane configurations and under different traffic volumes ranging from low to high. Step three, the impact of side friction, of each scenario, on speed-flow models was evaluated using AIMSUN microscopic traffic simulation software. Generally, it was found that, a noticeable negative shift in the speed flow curves from the base conditions was observed for all scenarios. This indicates negative impact of the side friction factors on free flow speed and traffic stream average speed as well as on capacity.

Keywords: AIMSUN, parked vehicles, pedestrians, side friction, traffic performance, trucks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
1179 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE

Authors: Sameh H. Ghwanmeh

Abstract:

Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.

Keywords: Education, networking, performance, e-content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1178 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model

Authors: Devdutt

Abstract:

In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.

Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
1177 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm

Authors: J. S. Yadav, N. P. Patidar, J. Singhai

Abstract:

One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.

Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
1176 Auto Tuning of PID Controller for MIMO Processes

Authors: M. J. Lengare, R. H. Chile, L. M. Waghmare, Bhavesh Parmar

Abstract:

One of the most basic functions of control engineers is tuning of controllers. There are always several process loops in the plant necessitate of tuning. The auto tuned Proportional Integral Derivative (PID) Controllers are designed for applications where large load changes are expected or the need for extreme accuracy and fast response time exists. The algorithm presented in this paper is used for the tuning PID controller to obtain its parameters with a minimum computing complexity. It requires continuous analysis of variation in few parameters, and let the program to do the plant test and calculate the controller parameters to adjust and optimize the variables for the best performance. The algorithm developed needs less time as compared to a normal step response test for continuous tuning of the PID through gain scheduling.

Keywords: Auto tuning; gain scheduling; MIMO Processes; Optimization; PID controller; Process Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
1175 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
1174 Determination of Level of Service of Agrabad to CEPZ Road at Chittagong in Bangladesh

Authors: Kutub Uddin Chisty, Md. Ashraful Islam, Shahjalal Misuk

Abstract:

Chittagong is the commercial capital of Bangladesh. Here Agrabad is one of the most commercial activity centers of Chittagong. Due to many light industry and commercial land use, Agrabad to CEPZ road at Agrabad is the only major road of Chittagong port city which encompasses a huge number of vehicles every day. It has many junctions which distribute traffic flow in different roads. In these junctions vehicles gather at some conflict point to create traffic jam and make the performance of the road downward. This study is parallel focused on the existing level of service with traffic volume, capacity, and speed by traffic survey. After all of these analyses the performance of the road is determined with finding the factors that influences the performance.

Keywords: Level of service, Traffic volume, Speed, Influences factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
1173 Centralized Controller for Microgrid

Authors: Adel Hamad Rafa

Abstract:

This paper, proposes a control system for use with microgrid consiste of  multiple small scale embedded generation networks (SSEG networks) connected to the 33kV distribution network. The proposed controller controls power flow in the grid-connected mode of operation, enables voltage and frequency control when the SSEG networks are islanded, and resynchronises the SSEG networks with the utility before reconnecting them. The performance of the proposed controller has been tested in simulations using PSCAD.

Keywords: Microgrid, Small scale embedded generation, island mode, resynchronisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
1172 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System

Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami

Abstract:

In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.

Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1171 Traffic Violation Detection System based on RFID

Authors: S. Hajeb, M. Javadi, S. M. Hashemi, P. Parvizi

Abstract:

Road Traffic Accidents are a major cause of disability and death throughout the world. The control of intelligent vehicles in order to reduce human error and boost ease congestion is not accomplished solely by the aid of human resources. The present article is an attempt to introduce an intelligent control system based on RFID technology. By the help of RFID technology, vehicles are connected to computerized systems, intelligent light poles and other available hardware along the way. In this project, intelligent control system is capable of tracking all vehicles, crisis management and control, traffic guidance and recording Driving offences along the highway.

Keywords: RFID, Intelligent highway, Traffic violation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13933
1170 Cost of Road Traffic Accidents in Egypt

Authors: Mohamed A. Ismail, Samar M. M. Abdelmageed

Abstract:

The main objective of this paper is to estimate the cost of road traffic accidents in Egypt. The Human Capital (HC) approach, specifically the Gross-Loss-of-Output methodology, is adopted for estimation. Moreover, cost values obtained by previous national literature are updated using the inflation rates. The results indicate an estimated cost of road traffic accidents in Egypt of approximately 10 billion Egyptian Pounds (about $US 1.8 billion) for the year 2008. In addition, it is expected that this cost will rise in 2009 to 11.8 billion Egyptian Pounds (about $US 2.1 billion).

Keywords: Cost, Gross-Loss-of-Output, Human CapitalApproach, Road Traffic Accidents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3741
1169 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: Bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1168 Comparison between Optimized Passive Vehicle Suspension System and Semi Active Fuzzy Logic Controlled Suspension System Regarding Ride and Handling

Authors: Mehrdad N. Khajavi, Vahid Abdollahi

Abstract:

The purpose of suspension system in automobiles is to improve the ride comfort and road handling. In this research the ride and handling performance of a specific automobile with passive suspension system is compared to a proposed fuzzy logic semi active suspension system designed for that automobile. The bodysuspension- wheel system is modeled as a two degree of freedom quarter car model. MATLAB/SIMULINK [1] was used for simulation and controller design. The fuzzy logic controller is based on two inputs namely suspension velocity and body velocity. The output of the fuzzy controller is the damping coefficient of the variable damper. The result shows improvement over passive suspension method.

Keywords: Suspension System, Ride Comfort, Fuzzy Logic Controller, Passive and Semi Active System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3549
1167 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

Authors: S. Khosravi, A. Afshar, F. Barazandeh

Abstract:

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
1166 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1165 Sliding Mode Control of Autonomous Underwater Vehicles

Authors: Ahmad Forouzan Tabar, Mohammad Azadi, Alireza Alesaadi

Abstract:

This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach.

Keywords: Lyapunov stability, autonomous underwater vehicle (AUV), sliding mode controller, electronics engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1164 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach

Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi

Abstract:

This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.

Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
1163 An LMI Approach of Robust H∞ Fuzzy State-Feedback Controller Design for HIV/AIDS Infection System with Dual Drug Dosages

Authors: Wudhichai Assawinchaichote

Abstract:

This paper examines the problem of designing robust H controllers for for HIV/AIDS infection system with dual drug dosages described by a Takagi-Sugeno (S) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an H controller which guarantees the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for the system. A sufficient condition of the controller for this system is given in term of Linear Matrix Inequalities (LMIs). The effectiveness of the proposed controller design methodology is finally demonstrated through simulation results. It has been shown that the anti-HIV vaccines are critically important in reducing the infected cells.

Keywords: H∞ Fuzzy control; Takagi-Sugeno (TS) fuzzy model; Linear Matrix Inequalities (LMIs); HIV/AIDS infection system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1162 Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: Gas separator, gas sweetening, intelligent controller, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1161 Fuzzy Logic and Control Strategies on a Sump

Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli

Abstract:

Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.

Keywords: Fuzzy, sump, level, controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
1160 Enhancing Human Mobility Exoskeleton Comfort Using Admittance Controller

Authors: Alexandre Rabaseda, Emelie Seguin, Marc Doumit

Abstract:

Human mobility exoskeletons have been in development for several years and are becoming increasingly efficient. Unfortunately, user comfort was not always a priority design criterion throughout their development. To further improve this technology, exoskeletons should operate and deliver assistance without causing discomfort to the user. For this, improvements are necessary from an ergonomic point of view. The device’s control method is important when endeavoring to enhance user comfort. Exoskeleton or rehabilitation device controllers use methods of control called interaction controls (admittance and impedance controls). This paper proposes an extended version of an admittance controller to enhance user comfort. The control method used consists of adding an inner loop that is controlled by a proportional-integral-derivative (PID) controller. This allows the interaction force to be kept as close as possible to the desired force trajectory. The force-tracking admittance controller modifies the actuation force of the system in order to follow both the desired motion trajectory and the desired relative force between the user and the exoskeleton.

Keywords: Mobility assistive device, exoskeleton, force-tracking admittance controller, user comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 393
1159 Adaptive Radio Resource Allocation for Multiple Traffic OFDMA Broadband Wireless Access System

Authors: Lu Yanhui, Zhang Lizhi, Yin Changchuan, Yue Guangxin

Abstract:

In this paper, an adaptive radio resource allocation (RRA) algorithm applying to multiple traffic OFDMA system is proposed, which distributes sub-carrier and loading bits among users according to their different QoS requirements and traffic class. By classifying and prioritizing the users based on their traffic characteristic and ensuring resource for higher priority users, the scheme decreases tremendously the outage probability of the users requiring a real time transmission without impact on the spectrum efficiency of system, as well as the outage probability of data users is not increased compared with the RRA methods published.

Keywords: OFDMA, adaptive radio resource allocation, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1158 Coordinated Design of PSS and STATCOM for Power System Stability Improvement Using Bacteria Foraging Algorithm

Authors: Kyaw Myo Lin, Wunna Swe, Pyone Lai Swe

Abstract:

This paper presents the coordinated controller design of static synchronous compensator (STATCOM) and power system stabilizers (PSSs) for power system stability improvement. Coordinated design problem of STATCOM-based controller with multiple PSSs is formulated as an optimization problem and optimal controller parameters are obtained using bacteria foraging optimization algorithm. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is improved. The nonlinear simulation results show that coordinated design of STATCOM-based controller and PSSs improve greatly the system damping oscillations and consequently stability improvement.

Keywords: Bacteria Foraging, Coordinated Design, Power System Stability, PSSs, STATCOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
1157 Design of Direct Power Controller for a High Power Neutral Point Clamped Converter Using Real Time Simulator

Authors: Amin Zabihinejad, Philippe Viarouge

Abstract:

In this paper, a direct power control (DPC) strategies have been investigated in order to control a high power AC/DC converter with time variable load. This converter is composed of a three level three phase neutral point clamped (NPC) converter as rectifier and an H-bridge four quadrant current control converter. In the high power application, controller not only must adjust the desire outputs but also decrease the level of distortions which are injected to the network from the converter. Regarding to this reason and nonlinearity of the power electronic converter, the conventional controllers cannot achieve appropriate responses. In this research, the precise mathematical analysis has been employed to design the appropriate controller in order to control the time variable load. A DPC controller has been proposed and simulated using Matlab/ Simulink. In order to verify the simulation result, a real time simulator- OPAL-RT- has been employed. In this paper, the dynamic response and stability of the high power NPC with variable load has been investigated and compared with conventional types using a real time simulator. The results proved that the DPC controller is more stable and has more precise outputs in comparison with conventional controller.

Keywords: Direct Power Control, Three Level Rectifier, Real Time Simulator, High Power Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939