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Abstract— This paper examines the problem of designing robust
H∞ controllers for for HIV/AIDS infection system with dual drug
dosages described by a Takagi-Sugeno (TS) fuzzy model. Based
on a linear matrix inequality (LMI) approach, we develop an H∞

controller which guarantees the L2-gain of the mapping from the
exogenous input noise to the regulated output to be less than
some prescribed value for the system. A sufficient condition of the
controller for this system is given in term of Linear Matrix Inequal-
ities (LMIs). The effectiveness of the proposed controller design
methodology is finally demonstrated through simulation results. It
has been shown that the anti-HIV vaccines are critically important in
reducing the infected cells.

Keywords— H∞ Fuzzy control; Takagi-Sugeno (TS) fuzzy model;
Linear Matrix Inequalities (LMIs); HIV/AIDS infection system

I. INTRODUCTION

O
Ver the past two decades, there has been rapidly growing

interest in application of fuzzy logic to control problem.

Researches have been focused on its application to industrial

processes and a number of successful results have been

reported in the literature. In spite of these successes, there

are many basic issues remain to be addressed. One of them is

how to achieve a systematic design that guarantees closed-loop

stability and performance. Recently, a great amount of effort

has been devoted to describing a nonlinear system using a

Takagi-Sugeno fuzzy model; see [1]–[18]. The Takagi-sugeno

fuzzy model represents a nonlinear system by a family of

local linear models which smoothly blended together through

fuzzy membership functions. Unlike conventional modelling

techniques which use a single model to describe the global

behavior of a nonlinear system, fuzzy modelling is essentially

a multi-model approach in which simple sub-models (typically

linear models) are fuzzily combined to described the global

behavior of a nonlinear system. Based on this fuzzy model,

a number of systematic model-based fuzzy control design

methodologies have been developed.

The problems of HIV/AIDS are very important in present

world. Basically, AIDS is a kind of a disease that can be treated

by using expedient drugs. From the present research, the com-

plete cure mechanism has not yet been found. Presently, some
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antiretroviral therapies use reverse transcriptase inhibitors for

fight against an enzyme from infected cells that called viral

protease. All of anti-HIV drugs aim at preventing the virus,

but they cannot kill virus particles or infected cells [19].

The dynamic HIV/AIDS studies have been shown by many

researchers such as J. Guedj et al. [20], R.A. Filter et al.

proposed [21], and R. Motta J. et al. [22]. HIV is a retrovirus

that primarily infects vital organs of the human immune

system such as CD4+T cells (a subset of T cells), macrophages

and dendritic cells. It directly and indirectly destroys CD4+T

cells. Once HIV has killed so many CD4+T cells such that

there are fewer than 200 of these cells per micro liter (µL)

of blood then cellular immunity is lost. In the absence of

antiretroviral therapy, the average time of progression from

HIV infection to AIDS is about nine to ten years, and the

average survival time after developing AIDS is only 9.2

months [19]. However, the rate of treated disease progression

is varied between individuals, from two weeks up to 20 years.

Figure 1 shows the natural history of HIV infections dynamics

as currently accepted [19], [20], [21], [22]. When a body has

been received HIV virus in primary infection, a number of

HIV virus will dramatically increase in first 30 days (resulting

CD4+T cells reduction). After the primary infection period,

a body builds HIV antibodies for agent virus so that, the

infection still stabilizes an approximate steady state. In the last

period, the antibody of healthy CD4+T cells will be drastically

reduced. Finally, the patient develops to be an AIDS person.

Over the past few decades, the nonlinear H∞-control theory

has been extensively studied by many researchers; see [27],

[28], [29], [30]. The nonlinear H∞-control problem can be

stated as follows: given a dynamic system with the exogenous

input noise and the measured output, find a controller such that

the L2-gain of the mapping from the exogenous input noise to

the regulated output is less than or equal to a prescribed value.

Presently, there are two commonly used approaches for pro-

viding solutions to the nonlinear H∞-control problems. The

first approach is based on the dissipativity theory and theory of

differential games; see [27], [31], [33]. The second approach

is based on the nonlinear version of classical Bounded Real

Lemma; see [29], [30], [32]. Both approaches show that the

solution of the nonlinear H∞-control problem is in fact related

to the solvability of Hamilton-Jacobi inequalities (HJIs).

What we intend to do in this paper is to design a fuzzy

H∞ controller for HIV/AIDS infection system with dual drug

dosages which can be represented by a Takagi-Sugeno (TS)

fuzzy model. Based on an LMI approach, we develop a state-
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Fig. 1. The natural history of HIV infections dynamics as currently accepted
[19], [20], [21], [22].

feedback controller for HIV/AIDS infection system with dual

drug dosages such that the L2-gain of the mapping from the

exogenous input noise to the regulated output is less than

a prescribed value. This paper is organized as follows. In

Section II, system descriptions and definition are presented. In

Section III, based on an LMI approach we develop a technique

for designing a fuzzy H∞ controller for HIV/AIDS infection

system with dual drug dosages that guarantees the L2-gain of

the mapping from the exogenous input noise to the regulated

output is less than a prescribed value. The validity of this

approach is finally demonstrated through simulation results in

Section IV. Finally in Section V, the conclusion is given.

II. SYSTEM DESCRIPTIONS AND DEFINITION

A. HIV dynamic model

Figure 2 shows HIV model which describes the interaction

of three variables; the healthy cells, the free virus, and the

infected cells. In most cases, HIV virus affects the level of

CD4+T cells which these cells are important in helping a body

fighting to infection. Free virus means the HIV virus found in

blood plasma. The healthy CD4+T cells are produced from

a source, such as the thymus represented by constant rate s

and died at rate d. The coefficient β is the infection rate. The

infected cells result from the infection of healthy CD4+T cells

and die at a rate µ. A free-virus particle is known as virions,

so called viral load, and cleared at a rate c (death rate of

virus). The variable k is a rate of virions product per infection

CD4+T cell.

+

Healthy cell
Infected cell

Free virus

Infection rate

Death rate of the healthy cell

A rate of virions product per infection

A rate to produce the healthy cells

Death rate of the infected cell

Death rate of virus

Fig. 2. Schematic illustration of the basic HIV model [19], [20], [21], [22].

The infection described previously can be summarized by

differential equations [19].

ẋ1(t) = s − dx1(t) + βx1(t)x3(t)
ẋ2(t) = βx1(t)x3(t) − µx2(t)
ẋ3(t) = kx2(t) − cx3(t)

(1)

where x1(t) is concentration of healthy cells or T cells, x2(t)
is concentration of infected cells, x3(t) is concentration of

virions (free virus particles), s is the constant rate to produced

the healthy CD4+T cells, d is the death rate of the healthy

CD4+T cells, β is the coefficient of the infection rate, µ is

death rate of the infected cells, k is a rate of virions product

per infection CD4+T cell, and c is death rate of virus.

Current treatment for HIV infection consists of highly active

antiretroviral therapy, or HAART. The HAART treatment used

drug in the group of protease inhibitor. The doctors will assess

the viral load, CD4+T counts, rapidity of CD4+T decline,

and patient readiness. While deciding, the doctors recommend

initiating treatment to the patient [24]. The parameters and

typical values are listed in Table 1 [23]. The information

of HIV model parameters obtain from [23] which the initial

conditions correspond to a healthy person infected with a virus

given by Table I. In 2007, M. Barao and J.M. Lemos proposed

the nonlinear dynamic model to describe HIV with treatment

as follows [23]:

ẋ1(t) = s − dx1(t) + (1 − u1(t))βx1(t)x3(t)
ẋ2(t) = (1 − u1(t))βx1(t)x3(t) − µx2(t)
ẋ3(t) = (1 − u2(t))kx2(t) − cx3(t)

(2)

where the controller input u1(t) and u2(t) are a number of

expedient drugs in the treatment of HAART represented by

Reverse Transcriptase Inhibitors-RTI (to reduce the virus per-

formance) and Protease Inhibitors-PI (to reduce the productiv-

ity of free virions), respectively [23].The healthy CD4+T cells

are produced from a source, such as the thymus represented

by constant rate s and died at rate d. The coefficient β is the

infection rate. The death rate of virus is described by c.

TABLE I

HIV MODEL PARAMETERS [23]

Parameter Typical Value Unit

t - Days
d 0.02 Per Day

k 100 Count Cell−1

s 100 mm3 Per Day

β 2.4 x 10−5 mm3 Per Day
c 2.4 Per Day
µ 0.24 Per Day

The model includes antiretroviral treatment and factors such

as adhesion and medication potency. The concepts of our

proposes are joined with fuzzy set theory and exogenous input

noise with biological variable values such as person factor,

mental state etc.

Mostly, HIV virus dynamics are modeled using a nonlinear

represented by cell. Each cell represents an uninfected cell,

an infected cell of the type T lymphocyte of CD4+, a free

virus particle, or specific antibodies such as CTL (Cytotoxic

T Lymphocyte). Due to the inherent uncertainties of HIV,
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the antiretroviral treatment is modeled using a fuzzy rule-

based system whose output depends on the medication potency

and the rate of adhesion to the treatment. The fuzzy rule-

based system consists of input processor, fuzzy rule-based

(a collection of fuzzy rules), fuzzy inference machine, and

output processor. Inputs processors are encoded into fuzzy sets

on the respective universes of the input variables. While the

rule-based is a component of fuzzy rule-based systems, which

is a collection of fuzzy conditional propositions in the form

of if-then rules. Fuzzy rules are an effective mean to encode

expert knowledge expressed through linguistic statements. In

general, if-then rules describe relationships between linguistic

variables. Fuzzy machine performs an approximate reasoning

use the compositional rule of inference. Finally, in fuzzy

rule-based systems, the inferred output is a fuzzy set. Often,

especially in biological systems model, we require a real-

valued output.

B. Nonlinear fuzzy model

In this subsection, we generalize the TS fuzzy system to

represent a TS fuzzy system with parametric uncertainties. In

this paper, we examine a TS fuzzy system with parametric

uncertainties as follows:

ẋ(t) =
∑r

i=1
µi(ν(t))

[

[Ai + ∆Ai]x(t)

+[B1i
+ ∆B1i

]w(t)

+[B2i
+ ∆B2i

]u(t)
]

, x(0) = 0

z(t) =
∑r

i=1
µi(ν(t))

[

[C1i
+ ∆C1i

]x(t)

+[D12i
+ ∆D12i

]u(t)
]

y(t) =
∑r

i=1
µi(ν(t))

[

[C2i
+ ∆C2i

]x(t)

+[D21i
+ ∆D21i

]w(t)
]

(3)

where ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable vector

that may depend on states in many cases, µi(ν(t)) denotes

the normalized time-varying fuzzy weighting functions for

each rule (i.e., µi(ν(t)) ≥ 0 and
∑r

i=1
µi(ν(t)) = 1), ϑ

is the number of fuzzy sets, x(t) ∈ ℜn is the state vector,

u(t) ∈ ℜm is the input, w(t) ∈ ℜp is the disturbance

which belongs to L2[0,∞), y(t) ∈ ℜℓ is the measure-

ment, z(t) ∈ ℜs is the controlled output, the matrices

Ai, B1i
, B2i

, C1i
, C2i

, D12i
and D21i

are of appropriate di-

mensions, and r is the number of IF-THEN rules. The matrices

∆Ai, ∆B1i
,∆B2i

, ∆C1i
, ∆C2i

,∆D12i
and ∆D21i

represent

the uncertainties in the system and satisfy the following

assumption.

Assumption 1:

∆Ai = F (x(t), t)H1i
,

∆B1i
= F (x(t), t)H2i

, ∆B2i
= F (x(t), t)H3i

,

∆C1i
= F (x(t), t)H4i

, ∆C2i
= F (x(t), t)H5i

,

∆D12i
= F (x(t), t)H6i

and ∆D21i
= F (x(t), t)H7i

where Hji
, j = 1, 2, · · · , 7 are known matrix functions which

characterize the structure of the uncertainties. Furthermore,

the following inequality holds:

‖F (x(t), t)‖ ≤ ρ (4)

for any known positive constant ρ.

Next, let us recall the following definition.

Definition 2.1: Suppose γ is a given positive number. A

system (3) is said to have an L2-gain less than or equal to γ

if

∫ Tf

0

zT (t)z(t)dt ≤ γ2

[

∫ Tf

0

wT (t)w(t)dt

]

, x(0) = 0 (5)

for all Tf ≥ 0 and w(t) ∈ L2[0, Tf ].

Note that for the symmetric block matrices, we use (∗) as an

ellipsis for terms that are induced by symmetry.

III. ROBUST H∞ FUZZY STATE-FEEDBACK CONTROLLER

FOR HIV/AIDS INFECTION SYSTEM

The aim of this section is to design a robust H∞ fuzzy

state-feedback controller of the form

u(t) =
r

∑

j=1

µjKjx(t) (6)

where Kj is the controller gain, such that the inequality (5)

holds. The state space form of the fuzzy system model (3)

with the controller (6) is given by

ẋ(t) =
∑r

i=1

∑r
j=1

µiµj

[

[(Ai + B2i
Kj)

+(∆Ai + ∆B2i
Kj)]x(t) + [B1i

+ ∆B1i
]w(t)

]

(7)

where x(0) = 0. The following theorem provides sufficient

conditions for the existence of a robust H∞ fuzzy state-

feedback controller. These sufficient conditions can be derived

by the Lyapunov approach.

Theorem 1: Consider the system (3). Given a prescribed

H∞ performance γ > 0 and a positive constant δ, if there

exist a matrix P = PT and matrices Yj , j = 1, 2, · · · , r,

satisfying the following linear matrix inequalities:

P > 0 (8)

Ωii < 0, i = 1, 2, · · · , r (9)

Ωij + Ωji < 0, i < j ≤ r (10)

where

Ωij =









(

AiP + PAT
i

+B2i
Yj + Y T

j BT
2i

)

(∗)T (∗)T

B̃T
1i

−γI (∗)T

C̃1i
P + D̃12i

Yj 0 −γI









(11)

with

B̃1i
=

[

δI I δI B1i

]

,
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C̃1i
=

[

γρ
δ

HT
1i

0
√

2λρHT
4i

√
2λCT

1i

]T
,

D̃12i
=

[

0 γρ
δ

HT
3i

√
2λρHT

6i

√
2λDT

12i

]T
,

λ =



1 + ρ2

r
∑

i=1

r
∑

j=1

[

‖HT
2i

H2j
‖
]





1

2

,

then the inequality (5) holds. Furthermore, a suitable choice

of the fuzzy controller is

u(t) =

r
∑

j=1

µjKjx(t) (12)

where

Kj = YjP
−1. (13)

Proof: The detail of the proof is omitted for brevity.

IV. SIMULATION RESULTS

A simulation result is given in this section to illustrate the

procedure of designing a fuzzy controller. Let us recall (2)

included with noise term. The parameters and typical values

are listed in Table 1.

ẋ1(t) = s − dx1(t) − (1 − u1(t))βx1(t)x3(t) + w1(t)
ẋ2(t) = (1 − u1(t))βx1(t)x3(t) − µx2(t) + w2(t)
ẋ3(t) = (1 − u2(t))kx2(t) − cx3(t) + w3(t)

(14)

where w1(t), w2(t) and w3(t)are the disturbance factor from

the patients and the controlled output is

z(t) = [x1(t) u1(t) u2(t)]
T . (15)

The nonlinear system plant can be approximated by TS

fuzzy rules. Let us choose the membership functions of the

fuzzy sets as follows.

M1(x1(t)) =







1 ; x1(t) ≤ 200
3 − 0.01x1(t) ; 200 < x1(t) ≤ 300
0 ; x1(t) > 300

M2(x1(t)) =







0.01x1(t) − 2 ; 200 < x1(t) ≤ 300
1 ; 300 < x1(t) ≤ 500
6 − 0.01x1(t) ; 500 < x1(t) ≤ 600

M3(x1(t)) =







0 ; x1(t) ≤ 500
0.01x1(t) − 5 ; 500 < x1(t) ≤ 600
1 ; x1(t) > 600

N1(x2(t)) =







1 ; x2(t) ≤ 10
2 − 0.1x2(t) ; 10 < x2(t) ≤ 20
0 ; x2(t) > 20

N2(x2(t)) =







0.1x2(t) − 1 ; 10 < x2(t) ≤ 20
1 ; 20 < x2(t) ≤ 90
10 − 0.1x2(t) ; 90 < x2(t) ≤ 100

N3(x2(t)) =







0 ; x2(t) ≤ 90
0.1x2(t) − 9 ; 90 < x2(t) ≤ 100
1 ; x2(t) > 100

q1(x3(t)) =







1 ; x3(t) ≤ 1
2 − x3(t) ; 1 < x3(t) ≤ 2
0 ; x3(t) > 2

q2(x3(t)) =







x3(t) − 2 ; 1 < x3(t) ≤ 2
1 ; 2 < x3(t) ≤ 3
4 − x3(t) ; 3 < x3(t) ≤ 4

q3(x3(t)) =







0 ; x3(t) ≤ 3
x3(t) − 3 ; 3 < x3(t) ≤ 4
1 ; x3(t) > 4

The membership functions of three variables which are the

healthy cell of CD4+T, the infected cells and the free cells are

shown in Figure 3. The TS fuzzy plant model can be obtained

as:

Plant Rule i:

IF x1(t) is Mi and x2(t) is Nj and x3(t) is qk

THEN

ẋ(t) = [Ai + ∆Ai]x(t) + Biu(t) + Bww(t),

z(t) = Cx(t) + Du(t)

where i, j, k = 1, · · ·, 3

Ai =





−d 0 −βx1(t)
0 −µ βx1(t)
0 k −c



, Bw =





1 0 0
0 1 0
0 0 1



,

Bi =





βx1(t)x3(t) 0
−βx1(t)x3(t) 0

0 kx2(t)



,C =





1 0 0
0 0 0
0 0 0



,

D =





0 0
1 0
0 1



, ∆Ai = F (x(t), t)H1i
,

x(t) = [xT
1
(t) xT

2
(t) xT

3
(t)]T

and w(t) = [wT
1
(t) wT

2
(t) wT

3
(t)]T .

Now by assuming that in (2), ‖F (x(t), t)‖ ≤ ρ = 1 and

since the value of µ, d, and c are uncertain but bounded within

10% of their nominal value in (14), we have

H1i
=





−0.1d 0 0
0 −0.1µ 0
0 0 −0.1c



 .

Using the LMI optimization algorithm and following The-

orem 1 with set as γ = 0.1, we obtain the results given in

Figure 4 - 6.

Remark 1: When a body has been received HIV virus in

primary infection (about 4-8 weeks), the doctors will assess

the viral load, CD4+T counts, rapidity of CD4+T decline, and

patient readiness before beginning treatment. The simulation

results given in Figure 4 show the level of CD4+T counts,

reverse transcriptase inhibitors-RTI to reduce the virus perfor-

mance, and protease inhibitors-PI to reduce the productivity

of free virions. Figure 4 shows the plot of healthy calls, i.e.,
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Fig. 3. Membership function of three variables.

if CD4+T are more than 500 cells/µL the patient will develop

the disease of HIV at low risk. Figure 5 shows the plot of

Reverse Transcriptase Inhibitors-RTI, which are a class of

antiretroviral drug used to treat HIV infection, tumors, and

cancer. RTIs inhibit activity of reverse transcriptase, a viral

DNA polymerase enzyme that retroviruses need to reduce the

virus performance, and Figure 6 shows the plot of Protease

Inhibitors-PI, which are molecules that inhibit the function of

proteases.

V. CONCLUSION

This paper has presented a robust H∞ fuzzy state-feedback

control design for nonlinear positive HIV infection dynamic

model. This paper has developed a fuzzy controller for apply-

ing in HIV nonlinear dynamic model to solve with antiretrovi-

ral therapy by using a fuzzy rule-based system with two inputs,
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Fig. 4. The simulation result of dual drug dosages for healthy cell, x1(t).
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Fig. 5. The simulation result of dual drug dosages for RTI, u1(t).
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Fig. 6. The simulation result of dual drug dosages for PI, u2(t).

the medication potency and the treatment adhesion rate. The

effective of controller can prevent infection. The progression

is the key to success of fighting against AIDS.
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