Search results for: Uniaxial Stresses.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 323

Search results for: Uniaxial Stresses.

323 Buckling Analysis of Rectangular Plates under the Combined Action of Shear and Uniaxial Stresses

Authors: V. Piscopo

Abstract:

In the classical buckling analysis of rectangular plates subjected to the concurrent action of shear and uniaxial forces, the Euler shear buckling stress is generally evaluated separately, so that no influence on the shear buckling coefficient, due to the in-plane tensile or compressive forces, is taken into account. In this paper the buckling problem of simply supported rectangular plates, under the combined action of shear and uniaxial forces, is discussed from the beginning, in order to obtain new project formulas for the shear buckling coefficient that take into account the presence of uniaxial forces. Furthermore, as the classical expression of the shear buckling coefficient for simply supported rectangular plates is considered only a “rough" approximation, as the exact one is defined by a system of intersecting curves, the convergence and the goodness of the classical solution are analyzed, too. Finally, as the problem of the Euler shear buckling stress evaluation is a very important topic for a variety of structures, (e.g. ship ones), two numerical applications are carried out, in order to highlight the role of the uniaxial stresses on the plating scantling procedures and the goodness of the proposed formulas.

Keywords: Buckling analysis, Shear, Uniaxial Stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
322 Lamb Waves in Plates Subjected to Uniaxial Stresses

Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng

Abstract:

On the basis of the theory of nonlinear elasticity, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.

Keywords: Acoustoelasticity, dispersion, finite deformation, lamb waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
321 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: Acoustic emission, geomaterial, laser ultrasound, uniaxial compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
320 Theoretical Considerations of the Influence of Mechanical Uniaxial Stress on Pixel Readout Circuits

Authors: Georgios C. Dogiamis, Bedrich J. Hosticka, Anton Grabmaier

Abstract:

In this work the effects of uniaxial mechanical stress on a pixel readout circuit are theoretically analyzed. It is the effects of mechanical stress on the in-pixel transistors do not arise at the output, when a correlated double sampling circuit is used. However, mechanical stress effects on the photodiode will directly appear at the readout chain output. Therefore, compensation techniques are needed to overcome this situation. Moreover simulation technique of mechanical stress is proposed and diverse layout as well as design recommendations are put forward, in order to minimize stress related effects on the output of a circuit. he shown, that wever, Moreover, a out

Keywords: mechanical uniaxial stress, pixel readout circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
319 Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression

Authors: V. Piscopo

Abstract:

In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.

Keywords: Buckling analysis, Thick plates, Biaxial stresses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
318 Experimental Study of Different Types of Concrete in Uniaxial Compression Test

Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh

Abstract:

Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.

Keywords: Polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
317 Structural Analysis of Warehouse Rack Construction for Heavy Loads

Authors: C. Kozkurt, A. Fenercioglu, M. Soyaslan

Abstract:

In this study rack systems that are structural storage units of warehouses have been analyzed as structural with Finite Element Method (FEA). Each cell of discussed rack system storages pallets which have from 800 kg to 1000 kg weights and 0.80x1.15x1.50 m dimensions. Under this load, total deformations and equivalent stresses of structural elements and principal stresses, tensile stresses and shear stresses of connection elements have been analyzed. The results of analyses have been evaluated according to resistance limits of structural and connection elements. Obtained results have been presented as visual and magnitude.

Keywords: warehouse, structural analysis, AS/RS, FEM, FEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3737
316 Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach

Authors: Aliakbar Golshani, Armin Ramezanzad

Abstract:

Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.

Keywords: Numerical Simulation, PFC, Tensile Strength, Brazilian Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
315 Classification of Buckling Behavior on Uniaxial Compression using A5052-O Sheets

Authors: S. Onoda, S. Yoshihara, B. J. MacDonald, Y. Okude

Abstract:

Aluminum alloy sheets have several advantages such as the lightweight, high-specific strength and recycling efficiency. Therefore, aluminum alloy sheets in sheet forming have been used in various areas as automotive components and so forth. During the process of sheet forming, wrinkling which is caused by compression stress might occur and the formability of sheets was affected by occurrence of wrinkling. A few studies of uniaxial compressive test by using square tubes, pipes and sheets were carried out to clarify the each wrinkling behavior. However, on uniaxial compressive test, deformation behavior of the sheets hasn-t be cleared. Then, it is necessary to clarify the relationship between the buckling behavior and the forming conditions. In this study, the effect of dimension of the sheet in the buckling behavior on compression test of aluminum alloy sheet was cleared by experiment and FEA. As the results, the buckling deformation was classified by three modes in terms of the distribution of equivalent plastic strain.

Keywords: Sheet forming, Compression test, Aluminum alloy sheet, Buckling behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
314 The Effect of Stress Biaxiality on Crack Shape Development

Authors: Osama A. Terfas

Abstract:

The development of shape and size of a crack in a pressure vessel under uniaxial and biaxial loadings is important in fitness-for-service evaluations such as leak-before-break. In this work finite element modelling was used to evaluate the mean stress and the J-integral around a front of a surface-breaking crack. A procedure on the basis of ductile tearing resistance curves of high and low constrained fracture mechanics geometries was developed to estimate the amount of ductile crack extension for surface-breaking cracks and to show the evolution of the initial crack shape. The results showed non-uniform constraint levels and crack driving forces around the crack front at large deformation levels. It was also shown that initially semi-elliptical surface cracks under biaxial load developed higher constraint levels around the crack front than in uniaxial tension. However similar crack shapes were observed with more extensions associated with cracks under biaxial loading.

Keywords: biaxial load, crack shape, fracture toughness, surface crack, uniaxial load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
313 Contact Stress on the Surface of Gear Teeth with Different Profile

Authors: K. Farhangdoost, H. Heirani

Abstract:

Contact stress is an important problem in industry. This is a problem that in the first attention may be don-t appears, but disregard of these stresses cause a lot of damages in machines. These stresses occur at locations such as gear teeth, bearings, cams and between a locomotive wheel and the railroad rail. These stresses cause failure by excessive elastic deformation, yielding and fracture. In this paper we intend show the effective parameters in contact stress and ponder effect of curvature. In this paper we study contact stresses on the surface of gear teeth and compare these stresses for four popular profiles of gear teeth (involute, cycloid, epicycloids, and hypocycloid). We study this problem with mathematical and finite element methods and compare these two methods on different profile surfaces.

Keywords: Contact stress, Cycloid, Epicycloids, Finite element, Gear, Hypocycloid, Involute, Radius of curvature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
312 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
311 The Effect of the Initial Stresses on the Reflection and Transmission of Plane Quasi-Vertical Transverse Waves in Piezoelectric Materials

Authors: Abo-El-Nour N. Abd-Alla, Fatimah A. Alsheikh

Abstract:

This study deals with the phenomena of reflection and transmission (refraction) of qSV-waves, for an incident of quasi transverse vertically waves, at a plane interface of two semi-infinite piezoelectric elastic media under the influence of the initial stresses. The relations governing the reflection and transmission coefficients of these reflected waves for various suitable boundary conditions are derived. We have shown analytically that reflection and transmission coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as will as the initial stresses presented in the media. The numerical calculations of the reflection and transmission amplitude ratios for different values of initial stresses have been carried out by computer for different materials as examples and the results are given in the form of graphs. Finally, some of particular cases are considered.

Keywords: Quasi plane vertical transverse waves, reflection and transmission coefficients, initial stresses, PZT-5H Ceramic, Aluminum Nitride (AlN), Piezoelectricity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
310 Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method

Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha

Abstract:

High voltage insulator has to withstand sever electrical stresses. Higher electrical stresses lead to erosion of the insulator surface. Degradation of insulating properties leads to flashover and in some extreme cases it may cause to puncture. For analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By minimizing the electrical stresses, reliability of the power system will improve. In this paper electric field intensity at critical regions of 400 kV silicone composite insulator is analyzed using finite element method. Insulator is designed using FEMM-2D software package. Electric Field Analysis (EFA) results are analyzed for five cases i.e., only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two sides grading ring. These EFA results recommended that two sides grading ring is better for minimization of electrical stresses and improving life span of insulator.

Keywords: Polymer insulator, electric field analysis, numerical methods, finite element method, FEMM-2D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
309 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: Finite element method, growth, residual stress, soft tissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
308 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: Disturbed state concept, hierarchical single surface, failure criterion, high performance concrete, high-strength concrete, nonlinear finite element analysis, polymer concrete, steel fibers, uniaxial compression test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
307 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: Cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437
306 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, surface runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
305 Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel

Authors: Amir Hossein Daei Sorkhabi, Farid Vakili Tahami

Abstract:

In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques.

Keywords: Creep, Constitutive equation, Cold-drawn 304L stainless steel, Weld, Base material

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
304 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Y. Zheng, W. Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b→0) and plane strain (b→∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: Bending, Creep, Miniature Specimen, Thin Plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
303 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field

Authors: Thomas Jin-Chee Liu

Abstract:

In this paper, the thermo-electro-structural coupledfield in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.

Keywords: Compressive stress, crack tip, Joule heating, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
302 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

Authors: M. M. Selim

Abstract:

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
301 Determination of Extreme Shear Stresses in Teaching Mechanics Using Freely Available Computer Tools

Authors: Rado Flajs

Abstract:

In the present paper the extreme shear stresses with the corresponding planes are established using the freely available computer tools like the Gnuplot, Sage, R, Python and Octave. In order to support these freely available computer tools, their strong symbolical and graphical abilities are illustrated. The nature of the stationary points obtained by the Method of Lagrangian Multipliers can be determined using freely available computer symbolical tools like Sage. The characters of the stationary points can be explained in the easiest way using freely available computer graphical tools like Gnuplot, Sage, R, Python and Octave. The presented figures improve the understanding of the problem and the obtained solutions for the majority of students of civil or mechanical engineering.

Keywords: engineering, continuum mechanics, extreme shear stresses, Gnuplot, Sage, R, Python, Octave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
300 Mechanical and Thermal Stresses in Functionally Graded Cylinders

Authors: A. Kurşun, E. Kara, E. Çetin, Ş. Aksoy, A. Kesimli

Abstract:

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Keywords: Functionally graded materials, hollow cylinder, thermoelasticity, thermomechanical load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083
299 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, Welded medium-walled I-shaped sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
298 Stresses in Cast Metal Inlays Restored Molars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.

Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
297 Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405

Authors: Kh.Farhangdoust, H.Kamankesh

Abstract:

Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.

Keywords: Chassis, cross member, residual stress, resistancespot weld.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
296 Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer

Authors: Rida B. Arieby

Abstract:

This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.

Keywords: Cyclic test, large strain, polymers semi-crystalline, Volume strain, Thermodynamics of Irreversible Processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
295 Transient Thermal Stresses of Functionally Graded Thick Hollow Cylinder under the Green-Lindsay Model

Authors: Tariq T. Darabseh

Abstract:

The transient thermoelastic response of thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized coupled thermoelasticity based on the Green-Lindsay model is used. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the volume fractions of the constituents. The thermal and elastic governing equations are solved by using Galerkin finite element method. All the finite element calculations were done by using commercial finite element program FlexPDE. The transient temperature, radial displacement, and thermal stresses distribution through the radial direction of the cylinder are plotted.

Keywords: Finite element method, thermal stresses, Green-Lindsay theory, functionally graded material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
294 Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints

Authors: F. Maamar, M. Sartor

Abstract:

The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.

Keywords: Adhesive layer, bounded joints, free-edge corner, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143