Search results for: Sampling clock generator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 955

Search results for: Sampling clock generator

895 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India

Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar

Abstract:

In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.

Keywords: Thermoelectric generator, LED, converts, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
894 Development of Wind Turbine Simulator for Generator Torque Control

Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park

Abstract:

Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.

Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083
893 Design and Construction of Microcontroller-Based Telephone Exchange System

Authors: Aye Sandar Win

Abstract:

This paper demonstrates design and construction of microcontroller-based telephone exchange system and the aims of this paper is to study telecommunication, connection with PIC16F877A and DTMF MT8870D. In microcontroller system, PIC 16F877 microcontroller is used to control the call processing. Dial tone, busy tone and ring tone are provided during call progress. Instead of using ready made tone generator IC, oscillator based tone generator is used. The results of this telephone exchange system are perfect for homes and small businesses needing the extensions. It requires the phone operation control system, the analog interface circuit and the switching circuit. This exchange design will contain eight channels. It is the best low cost, good quality telephone exchange for today-s telecommunication needs. It offers the features available in much more expensive PBX units without using high-priced phones. It is for long distance telephone services.

Keywords: Control software, DTMF receiver and decoder, hooksensing, microcontroller system, power supply, ring generator andoscillator based tone generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7664
892 Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean

Authors: Mahmoud I. Syam

Abstract:

Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results.

Keywords: Efficiency, double ranked set sampling, median ranked set sampling, ranked set sampling, stratified.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
891 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
890 Simulation of Surge Protection for a Direct Current Circuit

Authors: Pedro Luis Ferrer Penalver, Edmundo da Silva Braga

Abstract:

In this paper, the performance of a simple surge protection for a direct current circuit was simulated. The protection circuit was developed from modified electric macro models of a gas discharge tube and a transient voltage suppressor diode. Moreover, a combination wave generator circuit was used as source of energy surges. The simulations showed that the circuit presented ensures immunity corresponding with test level IV of the IEC 61000-4-5:2014 international standard. The developed circuit can be modified to meet the requirements of any other equipment to be protected. Similarly, the parameters of the combination wave generator can be changed to provide different surge amplitudes.

Keywords: Combination wave generator, IEC 61000-4-5, Pspice simulation, surge protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3258
889 A New Design of Mobile Thermoelectric Power Generation System

Authors: Hsin-Hung Chang, Jin-Lung Guan, Ming-Ta Yang

Abstract:

This paper presents a compact thermoelectric power generator system based on temperature difference across the element. The system can transfer the burning heat energy to electric energy directly. The proposed system has a thermoelectric generator and a power control box. In the generator, there are 4 thermoelectric modules (TEMs), each of which uses 2 thermoelectric chips (TEs) and 2 cold sinks, 1 thermal absorber, and 1 thermal conduction flat board. In the power control box, there are 1 storing energy device, 1 converter, and 1 inverter. The total net generating power is about 11W. This system uses commercial portable gas stoves or burns timber or the coal as the heat source, which is easily obtained. It adopts solid-state thermoelectric chips as heat inverter parts. The system has the advantages of being light-weight, quite, and mobile, requiring no maintenance, and havng easily-supplied heat source. The system can be used a as long as burning is allowed. This system works well for highly-mobilized outdoors situations by providing a power for illumination, entertainment equipment or the wireless equipment at refuge. Under heavy storms such as typhoon, when the solar panels become ineffective and the wind-powered machines malfunction, the thermoelectric power generator can continue providing the vital power.

Keywords: Thermoelectric chip, seekback effect, thermo electric power generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
888 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
887 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation

Authors: Khattab Ibrahim Al Qaisi, Nicholas Bowring

Abstract:

This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.

Keywords: SVPWM, THD, DC-AC Inverter, Sampling Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2942
886 Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel

Authors: Tsair-Wang Chung, Kuan-Ting Liu, Mai-Tzu Chen

Abstract:

Under the variation of crude oil price and the impact of greenhouse effect, it is urgent to find a potential alternative fuel. Among these alternative fuels, non edible plant oils are the most potential ones, because they don-t have the problem of food and cropland competitions. Among the non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has good oil quality and low temperature performance. It has potential to become one of the most competitive biomass crude oils. The crude plant oil will be blended with diesel fuel to be tested in a power generator. The international collaboration between Taiwan and Indonesia on the production of Jatropha in Indonesia will also be presented in this study.

Keywords: Jatropha, plant oil, oil blend, diesel, power generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
885 Switched Reluctance Generator for Wind Power Applications

Authors: M. Nassereddine, J. Rizk, M. Nagrial

Abstract:

Green house effect has becomes a serious concern in many countries due to the increase consumption of the fossil fuel. There have been many studies to find an alternative power source. Wind energy found to be one of the most useful solutions to help in overcoming the air pollution and global. There is no agreed solution to conversion of wind energy to electrical energy. In this paper, the advantages of using a Switched Reluctance Generator (SRG) for wind energy applications. The theoretical study of the self excitation of a SRG and the determination of the variable parameters in a SRG design are discussed. The design parameters for the maximum power output of the SRG are computed using Matlab simulation. The designs of the circuit to control the variable parameters in a SRG to provide the maximum power output are also discussed.

Keywords: Switched Reluctance Generator, Wind Power, Electrical Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
884 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images

Authors: Maninder Pal

Abstract:

Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.

Keywords: Zooming, interpolation, medical images, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
883 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: Control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
882 The Effects of Signal Level of the Microwave Generator on the Brillouin Gain Spectrum in BOTDA and BOTDR

Authors: M. Yucel, M. Yucel, N. F. Ozturk, H. H. Goktas, C. Gemci, F. V. Celebi

Abstract:

In this study, Brillouin Gain Spectrum (BGS) is experimentally analyzed in the Brillouin Optical Time Domain Reflectometry (BOTDR) and Brillouin Optical Time Domain Analyzer (BOTDA). For this purpose, the signal level of the microwave generator is varied and the effects of BGS are investigated. In the setups, 20 km conventional single mode fiber is used to both setups and laser wavelengths are selected around 1550 nm. To achieve best results, it can be used between 5 dBm to 15 dBm signal level of microwave generator for BOTDA and BOTDR setups.

Keywords: Microwave signal level, Brillouin gain spectrum, BOTDA, BOTDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
881 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
880 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink

Authors: J. Y. Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. The effects of different operating conditions, including various inlet velocities (Vin= 1, 3, 5 m/s), inlet temperatures (Tgas = 450, 550, 650K) and different fin height (0 to 150 mm) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: Thermoelectric generator, Waste heat recovery, Elliptical pin-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
879 Static Single Point Positioning Using The Extended Kalman Filter

Authors: I. Sarras, G. Gerakios, A. Diamantis, A. I. Dounis, G. P. Syrcos

Abstract:

Global Positioning System (GPS) technology is widely used today in the areas of geodesy and topography as well as in aeronautics mainly for military purposes. Due to the military usage of GPS, full access and use of this technology is being denied to the civilian user who must then work with a less accurate version. In this paper we focus on the estimation of the receiver coordinates ( X, Y, Z ) and its clock bias ( δtr ) of a fixed point based on pseudorange measurements of a single GPS receiver. Utilizing the instantaneous coordinates of just 4 satellites and their clock offsets, by taking into account the atmospheric delays, we are able to derive a set of pseudorange equations. The estimation of the four unknowns ( X, Y, Z , δtr ) is achieved by introducing an extended Kalman filter that processes, off-line, all the data collected from the receiver. Higher performance of position accuracy is attained by appropriate tuning of the filter noise parameters and by including other forms of biases.

Keywords: Extended Kalman filter, GPS, Pseudorange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
878 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator

Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov

Abstract:

The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.

Keywords: High-temperature starter-generator, More electrical engine, multi-criteria optimization, permanent magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
877 A Convenient Model for I-V Characteristic of a Solar Cell Generator as an Active Two-Pole with Self-Limitation of Current

Authors: A. A. Penin, A. S. Sidorenko

Abstract:

A convenient and physically sound mathematical model of the external or I - V characteristic of solar cells generators is presented in this paper. This model is compared with the traditional model of p-n junction. The direct analytical calculation of load regime leads to a quadratic equation, which is importantly to simplify the calculations in the real time.

Keywords: A solar cell generator, I−V characteristic, activetwo-pole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
876 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG

Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi

Abstract:

In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.

Keywords: Wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
875 Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits

Authors: Santanu Santra, Utpal Roy

Abstract:

The most important mathematical operation for any computing system is addition. An efficient adder can be of greater assistance in designing of any arithmetic circuits. Quantum-dot Cellular Automata (QCA) is a promising nanotechnology to create electronic circuits for computing devices and suitable candidate for next generation of computing systems. The article presents a modest approach to implement a novel XOR gate. The gate is simple in structure and powerful in terms of implementing digital circuits. By applying the XOR gate, the hardware requirement for a QCA circuit can be decrease and circuits can be simpler in level, clock phase and cell count. In order to verify the functionality of the proposed device some implementation of Half Adder (HA) and Full Adder (FA) is checked by means of computer simulations using QCA-Designer tool. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.

Keywords: Clock, Computing system, Majority gate, QCA, QCA Designer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4412
874 A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description

Authors: Jaroslav Polec, Viliam Hirner, Michal Martinovič, Kvetoslava Kotuliaková

Abstract:

In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.

Keywords: Wireless channel, error model, Markov chain, Elliot model, Gilbert model, generator, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
873 Central Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot

Authors: Valeri A. Makarov, Ezequiel Del Rio, Manuel G. Bedia, Manuel G. Velarde, Werner Ebeling

Abstract:

We proposed the use of a Toda-Rayleigh ring as a central pattern generator (CPG) for controlling hexapodal robots. We show that the ring composed of six Toda-Rayleigh units coupled to the limb actuators reproduces the most common hexapodal gaits. We provide an electrical circuit implementation of the CPG and test our theoretical results obtaining fixed gaits. Then we propose a method of incorporation of the actuator (motor) dynamics in the CPG. With this approach we close the loop CPG – environment – CPG, thus obtaining a decentralized model for the leg control that does not require higher level intervention to the CPG during locomotion in a nonhomogeneous environments. The gaits generated by the novel CPG are not fixed, but adapt to the current robot bahvior.

Keywords: Central pattern generator, electrical circuit, hexapod robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
872 Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

Authors: Jin-Sung Kim, Jin-Hwan Kim, Ji-Mo Park, Sung-Man Park, Won-Yong Choe, Hoon Heo

Abstract:

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.

Keywords: Genetic Algorithm, Auto tuning, Hybrid random number generator, Reverse Osmosis, PID controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
871 Performance Analysis of Self Excited Induction Generator Using Artificial Bee Colony Algorithm

Authors: A. K. Sharma, N. P. Patidar, G. Agnihotri, D. K. Palwalia

Abstract:

This paper presents the performance state analysis of Self-Excited Induction Generator (SEIG) using Artificial Bee Colony (ABC) optimization technique. The total admittance of the induction machine is minimized to calculate the frequency and magnetizing reactance corresponding to any rotor speed, load impedance and excitation capacitance. The performance of SEIG is calculated using the optimized parameter found. The results obtained by ABC algorithm are compared with results from numerical method. The results obtained coincide with the numerical method results. This technique proves to be efficient in solving nonlinear constrained optimization problems and analyzing the performance of SEIG.

Keywords: Artificial bee colony, Steady state analysis, Selfexcited induction generator, Nonlinear constrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
870 Generator Capability Curve Constraint for PSO Based Optimal Power Flow

Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama

Abstract:

An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.

Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
869 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Authors: H. Rezvani, A. Hekmati

Abstract:

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA. 

Keywords: Renewable Energy, Wind Diesel System, Induction Generator, Energy Storage, Imperialist Competitive Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
868 Adaptive Sampling Algorithm for ANN-based Performance Modeling of Nano-scale CMOS Inverter

Authors: Dipankar Dhabak, Soumya Pandit

Abstract:

This paper presents an adaptive technique for generation of data required for construction of artificial neural network-based performance model of nano-scale CMOS inverter circuit. The training data are generated from the samples through SPICE simulation. The proposed algorithm has been compared to standard progressive sampling algorithms like arithmetic sampling and geometric sampling. The advantages of the present approach over the others have been demonstrated. The ANN predicted results have been compared with actual SPICE results. A very good accuracy has been obtained.

Keywords: CMOS Inverter, Nano-scale, Adaptive Sampling, ArtificialNeural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
867 Optimization Method Based MPPT for Wind Power Generators

Authors: Chun-Yao Lee , Yi-Xing Shen , Jung-Cheng Cheng , Chih-Wen Chang, Yi-Yin Li

Abstract:

This paper proposes the method combining artificial neural network with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. With the measurements of wind speed, rotor speed of wind generator and output power, the artificial neural network can be trained and the wind speed can be estimated. The proposed control system in this paper provides a manner for searching the maximum output power of wind generator even under the conditions of varying wind speed and load impedance.

Keywords: maximum power point tracking, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
866 On the Efficiency of a Double-Cone Gravitational Motor and Generator

Authors: Barenten Suciu, Akio Miyamura

Abstract:

In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.

Keywords: Truncated double-cone, friction, rolling and sliding, efficiency, gravitational motor and generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897