Search results for: Pump geometric parameters.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4058

Search results for: Pump geometric parameters.

3788 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
3787 Improvement of Salt Tolerance in Saudi Arabian Wheat by Seed Priming or Foliar Spray with Salicylic Acid

Authors: Saad M. Howladar, Mike Dennett

Abstract:

The effect of exogenous application; seed priming or foliar spraying of salicylic acid (SA) on Yecora Rojo and Paragon wheat cv. under NaCl-salinity. Gas exchange parameters, growth parameters, yield and yield components were reduced in both cultivars under salinity stress with foliar spray and soaking seeds. Exogenous application of SA through foliar spraying or seed soaking showed a slight increases or decreases with the application method or between cultivars. SA foliar spraying exhibited a slight improvement over SA seed soaking in most parameters, particularly in Paragon. Although, seed soaking was less effective than foliar spraying, it was a slightly better with Yecora Rojo in some parameters. However, the low SA concentration; 0.5mM tended to improve most parameters in both cultivars. From data of the experiment, it has been concluded that the effect of SA depends on cultivar genotype and SA concentration.

Keywords: Salinity, Salicylic acid, Growth parameters, yield components, Wheat cultivars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2985
3786 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285
3785 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution

Authors: Rafid Saeed Abdulrazak Alshkaki

Abstract:

In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.

Keywords: Zero one inflated models, negative binomial distribution, moments estimator, non-negative integer sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
3784 Light Confinement in Low Index Nanometer Areas

Authors: N. Aravantinos-Zafiris, M. M. Sigalas

Abstract:

In this work we numerically examine structures which could confine light in nanometer areas. A system consisting of two silicon disks with in plane separation of a few tens of nanometers has been studied first. The normalized unitless effective mode volume, Veff, has been calculated for the two lowest whispering gallery mode resonances. The effective mode volume is reduced significantly as the gap between the disks decreases. In addition, the effect of the substrate is also studied. In that case, Veff of approximately the same value as the non-substrate case for a similar two disk system can be obtained by using disks almost twice as thick. We also numerically examine a structure consisting of a circular slot waveguide which is formed into a silicon disk resonator. We show that the proposed structure could have high Q resonances thus raising the belief that it is a very promising candidate for optical interconnects applications. The study includes several numerical calculations for all the geometric parameters of the structure. It also includes numerical simulations of the coupling between a waveguide and the proposed disk resonator leading to a very promising conclusion about its applicability.

Keywords: Disk resonators, field enhancement, optical interconnect, slot waveguides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
3783 A Simulated Design and Analysis of a Solar Thermal Parabolic Trough Concentrator

Authors: Fauziah Sulaiman, Nurhayati Abdullah, Balbir Singh Mahinder Singh

Abstract:

In recent years Malaysia has included renewable energy as an alternative fuel to help in diversifying the country-s energy reliance on oil, natural gas, coal and hydropower with biomass and solar energy gaining priority. The scope of this paper is to look at the designing procedures and analysis of a solar thermal parabolic trough concentrator by simulation utilizing meteorological data in several parts of Malaysia. Parameters which include the aperture area, the diameter of the receiver and the working fluid may be varied to optimize the design. Aperture area is determined by considering the width and the length of the concentrator whereas the geometric concentration ratio (CR) is obtained by considering the width and diameter of the receiver. Three types of working fluid are investigated. Theoretically, concentration ratios can be very high in the range of 10 to 40 000 depending on the optical elements used and continuous tracking of the sun. However, a thorough analysis is essential as discussed in this paper where optical precision and thermal analysis must be carried out to evaluate the performance of the parabolic trough concentrator as the theoretical CR is not the only factor that should be considered.

Keywords: Parabolic trough concentrator, Concentration ratio, Intercept factor, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3932
3782 Vacuum Membrane Distillation for Desalination of Ground Water by using Flat Sheet Membrane

Authors: Bhausaheb L. Pangarkar, M.G. Sane, Saroj B. Parjane, Mahendra Guddad

Abstract:

The possibility of producing drinking water from brackish ground water using Vacuum membrane distillation (VMD) process was studied. It is a rising technology for seawater or brine desalination process. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. In this work, VMD performance was investigated for aqueous NaCl solution and natural ground water. The influence of operational parameters such as feed flow rate (30 to 55 l/h), feed temperature (313 to 333 K), feed salt concentration (5000 to 7000 mg/l) and permeate pressure (1.5 to 6 kPa) on the membrane distillation (MD) permeation flux have been investigated. The maximum flux reached to 28.34 kg/m2 h at feed temperature, 333 K; vacuum pressure, 1.5 kPa; feed flow rate, 55 l/h and feed salt concentration, 7000 mg/l. The negligible effects in the reduction of permeate flux found over 150 h experimental run for salt water. But for the natural ground water application over 75 h, scale deposits observed on the membrane surface and 29% reduction in the permeate flux over 75 h. This reduction can be eliminated by acidification of feed water. Hence, promote the research attention in apply of VMD for the ground water purification over today-s conventional RO operation.

Keywords: VMD, hydrophobic PTFE flat membrane, desalination, ground water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
3781 Analytical Camera Model Supplemented with Influence of Temperature Variations

Authors: Peter Podbreznik, Božidar Potocnik

Abstract:

A camera in the building site is exposed to different weather conditions. Differences between images of the same scene captured with the same camera arise also due to temperature variations. The influence of temperature changes on camera parameters were modelled and integrated into existing analytical camera model. Modified camera model enables quantitatively assessing the influence of temperature variations.

Keywords: camera calibration, analytical model, intrinsic parameters, extrinsic parameters, temperature variations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
3780 The Effect of Selective Cyclooxygenase (COX) Inhibitors on Japanese Medaka (Oryzias latipes) Reproduction Parameters

Authors: Agata Kowalska, Radosław K. Kowalski, Zdzisław Zakęś

Abstract:

Our results showed that treatment with both cyclooxygenase (COX1 or COX2) inhibitors impair reproduction parameters of the medaka. Resveratrol (COX1 inhibitor) caused an decrease in the number of spawning females at the first week of feeding fish with experimental diets. In the group treated with NS- 398 (COX2 inhibitor) we found the lowest sperm velocity parameters and decreased linearity of movement. The ovaries of the medaka fed feed supplemented with Resveratrol or NS-398 were confirmed to have a lower share of matured oocytes however during the experiment (four weeks) the number of eggs spawned by females was similar. Both inhibitors in fish diet (20 mg/kg body weight/day) caused a decrease in the embryo survival. Our results revealed that for the medaka female reproduction, activity of both COX enzymes might be necessary whereas males reproduction competence, as expressed by sperm motility parameters, might be related to COX2 activity.

Keywords: COX innibitors, medaka, reproduction parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
3779 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium

Authors: Piotr Ciuman, Barbara Lipska

Abstract:

The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.

Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
3778 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: Linear systems, parametrization, Coprime Factorization, number of parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
3777 Helicopter Adaptive Control with Parameter Estimation Based on Feedback Linearization

Authors: A. R. Nemati, M. Haddad Zarif, M. M. Fateh

Abstract:

This paper presents an adaptive feedback linearization approach to derive helicopter. Ideal feedback linearization is defined for the cases when the system model is known. Adaptive feedback linearization is employed to get asymptotically exact cancellation for the inherent uncertainty in the knowledge of the given parameters of system. The control algorithm is implemented using the feedback linearization technique and adaptive method. The controller parameters are unknown where an adaptive control law aims to drive them towards their ideal values for providing perfect model matching between the reference model and the closed-loop plant model. The converged parameters of controller would then provide good estimates for the unknown plant parameters.

Keywords: Adaptive control, helicopter, feedback linearization, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
3776 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.

Keywords: Air viscosity, design parameters, loudspeaker, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
3775 Temperature Effect on the Organic Solar Cells Parameters

Authors: F.Belhocine-Nemmar; MS.Belkaid D. Hatem, O Boughias

Abstract:

In this work, the influence of temperature on the different parameters of solar cells based on organic semiconductors are studied. The short circuit current Isc increases so monotonous with temperature and then saturates to a maximum value before decreasing at high temperatures. The open circuit voltage Vco decreases linearly with temperature. The fill factor FF and efficiency, which are directly related with Isc and Vco follow the variations of the letters. The phenomena are explained by the behaviour of the mobility which is a temperature activated process.

Keywords: cells parameters, organic materials, solar cells, temperature effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
3774 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh

Abstract:

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
3773 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: Bath parameters, coatings, design of experiment, fracture toughness, impact strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
3772 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design

Authors: Ali Raad Hassan

Abstract:

In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.

Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
3771 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments

Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas

Abstract:

Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.

Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
3770 Impact of Machining Parameters on the Surface Roughness of Machined PU Block

Authors: Louis Denis Kevin Catherine, Raja Aziz Raja Ma’arof, Azrina Arshad, Sangeeth Suresh

Abstract:

Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. Polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate on the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition the stepover and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block.

Keywords: Polyurethane (PU), design of experiment (DOE), scanning electron microscope (SEM), surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3567
3769 Investigations Into the Turning Parameters Effect on the Surface Roughness of Flame Hardened Medium Carbon Steel with TiN-Al2O3-TiCN Coated Inserts based on Taguchi Techniques

Authors: Samir Khrais, Adel Mahammod Hassan , Amro Gazawi

Abstract:

The aim of this research is to evaluate surface roughness and develop a multiple regression model for surface roughness as a function of cutting parameters during the turning of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts. An experimental plan of work and signal-to-noise ratio (S/N) were used to relate the influence of turning parameters to the workpiece surface finish utilizing Taguchi methodology. The effects of turning parameters were studied by using the analysis of variance (ANOVA) method. Evaluated parameters were feed, cutting speed, and depth of cut. It was found that the most significant interaction among the considered turning parameters was between depth of cut and feed. The average surface roughness (Ra) resulted by TiN-Al2O3- TiCN coated inserts was about 2.44 μm and minimum value was 0.74 μm. In addition, the regression model was able to predict values for surface roughness in comparison with experimental values within reasonable limit.

Keywords: Medium carbon steel, Prediction, Surface roughness, Taguchi method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
3768 Improve Safety Performance of Un-Signalized Intersections in Oman

Authors: Siham G. Farag

Abstract:

The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T-intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.

Keywords: Accidents Prediction Models (APMs), Generalized Linear Model (GLM), T-intersections, Oman.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
3767 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter

Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal

Abstract:

A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.

Keywords: Diameter, Electrospinning, GA, Nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
3766 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
3765 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.

Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez

Abstract:

The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.

Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
3764 Experimental Characterization of a Thermoacoustic Travelling-Wave Refrigerator

Authors: M. Pierens, J.-P. Thermeau, T. Le Pollès, P. Duthil

Abstract:

The performances of a thermoacoustic travelling-wave refrigerator are presented. Developed in the frame of the European project called THATEA, it is designed for providing 600 W at a temperature of 233 K with an efficiency of 40 % relative to the Carnot efficiency. This paper presents the device and the results of the first measurements. For a cooling power of 210 W, a coefficient of performance relative to Carnot of 30 % is achieved when the refrigerator is coupled with an existing standing-wave engine.

Keywords: Refrigeration, sustainable energy, thermoacoustics, travelling-wave type heat pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
3763 Application of Build-up and Wash-off Models for an East-Australian Catchment

Authors: Iqbal Hossain, Monzur Alam Imteaz, Mohammed Iqbal Hossain

Abstract:

Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.

Keywords: Calibration, Model Parameters, Suspended Solids, TotalNitrogen, Total Phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
3762 Aerodynamic Design of Three-Dimensional Bellmouth for Low-Speed Open-Circuit Wind Tunnel

Authors: Harshavardhan Reddy, Balaji Subramanian

Abstract:

A systematic parametric study to find the optimum Bellmouth profile by relating geometric and performance parameters to satisfy a set of specifications is reported. A careful aerodynamic design of Bellmouth intake is critical to properly direct the flow with minimal losses and maximal flow uniformity into the honeycomb located inside the settling chamber of an indraft wind tunnel, thus improving the efficiency of the entire unit. Design charts for elliptically profiled Bellmouth's with two different contraction ratios (9 and 18) and three different test section speeds (25 m/s, 50 m/s, and 75 m/s) were presented. A significant performance improvement - especially in the coefficient of discharge and in the flow angularity and boundary layer thickness at the honeycomb inlet - was observed when an entry corner radius (r/D = 0.08) was added to the Bellmouth profile. The nonuniformity at the honeycomb inlet drops by about three times (~1% to 0.3%) when moving from square to regular octagonal cross-section. An octagonal cross-sectioned Bellmouth intake with L/d = 0.55, D/d = 1.625, and r/D = 0.08 met all the four target performance specifications and is proposed as the best choice for a low-speed wind tunnel.

Keywords: Bellmouth intake, low-speed wind tunnel, coefficient of discharge, nonuniformity, flow angularity, boundary layer thickness, CFD, aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
3761 A Calibration Approach towards Reducing ASM2d Parameter Subsets in Phosphorus Removal Processes

Authors: N.Boontian

Abstract:

A novel calibration approach that aims to reduce ASM2d parameter subsets and decrease the model complexity is presented. This approach does not require high computational demand and reduces the number of modeling parameters required to achieve the ASMs calibration by employing a sensitivity and iteration methodology. Parameter sensitivity is a crucial factor and the iteration methodology enables refinement of the simulation parameter values. When completing the iteration process, parameters values are determined in descending order of their sensitivities. The number of iterations required is equal to the number of model parameters of the parameter significance ranking. This approach was used for the ASM2d model to the evaluated EBPR phosphorus removal and it was successful. Results of the simulation provide calibration parameters. These included YPAO, YPO4, YPHA, qPHA, qPP, μPAO, bPAO, bPP, bPHA, KPS, YA, μAUT, bAUT, KO2 AUT, and KNH4 AUT. Those parameters were corresponding to the experimental data available.

Keywords: ASM2d, calibration approach, iteration methodology, sensitivity, phosphorus removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
3760 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: Curing, epoxy insulation, numerical simulations, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3759 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: Shear strength parameters, direct shear test, silty sand, shear stress, shear deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709