Search results for: Predicting Bankruptcy
404 Predicting Bankruptcy using Tabu Search in the Mauritian Context
Authors: J. Cheeneebash, K. B. Lallmamode, A. Gopaul
Abstract:
Throughout this paper, a relatively new technique, the Tabu search variable selection model, is elaborated showing how it can be efficiently applied within the financial world whenever researchers come across the selection of a subset of variables from a whole set of descriptive variables under analysis. In the field of financial prediction, researchers often have to select a subset of variables from a larger set to solve different type of problems such as corporate bankruptcy prediction, personal bankruptcy prediction, mortgage, credit scoring and the Arbitrage Pricing Model (APM). Consequently, to demonstrate how the method operates and to illustrate its usefulness as well as its superiority compared to other commonly used methods, the Tabu search algorithm for variable selection is compared to two main alternative search procedures namely, the stepwise regression and the maximum R 2 improvement method. The Tabu search is then implemented in finance; where it attempts to predict corporate bankruptcy by selecting the most appropriate financial ratios and thus creating its own prediction score equation. In comparison to other methods, mostly the Altman Z-Score model, the Tabu search model produces a higher success rate in predicting correctly the failure of firms or the continuous running of existing entities.
Keywords: Predicting Bankruptcy, Tabu Search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939403 Consumer Insolvency in the Czech Republic
Authors: Jindřiška Šedová
Abstract:
The Czech Republic is a country whose economy has undergone a transformation since 1989. Since joining the EU it has been striving to reduce the differences in its economic standard and the quality of its institutional environment in comparison with developed countries. According to an assessment carried out by the World Bank, the Czech Republic was long classed as a country whose institutional development was seen as problematic. For many years one of the things it was rated most poorly on was its bankruptcy law. The new Insolvency Act, which is a modern law in terms of its treatment of bankruptcy, was first adopted in the Czech Republic in 2006. This law, together with other regulatory measures, offers debtridden Czech economic subjects legal instruments which are well established and in common practice in developed market economies. Since then, analyses performed by the World Bank and the London EBRD have shown that there have been significant steps forward in the quality of Czech bankruptcy law. The Czech Republic still lacks an analytical apparatus which can offer a structured characterisation of the general and specific conditions of Czech company and household debt which is subject to current changes in the global economy. This area has so far not been given the attention it deserves. The lack of research is particularly clear as regards analysis of household debt and householders- ability to settle their debts in a reasonable manner using legal and other state means of regulation. We assume that Czech households have recourse to a modern insolvency law, yet the effective application of this law is hampered by the inconsistencies in the formal and informal institutions involved in resolving debt. This in turn is based on the assumption that this lack of consistency is more marked in cases of personal bankruptcy. Our aim is to identify the symptoms which indicate that for some time the effective application of bankruptcy law in the Czech Republic will be hindered by factors originating in householders- relative inability to identify the risks of falling into debt.Keywords: bankruptcy law, household debt, consumer bankruptcy, business bankruptcy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724402 A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach
Authors: D. A. Farinde
Abstract:
One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.
Keywords: Bank, Bankruptcy, Financial Ratios, Neural Network, Multilayer Perceptron, Predictive Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705401 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightlydistressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the one-stage model has the lower misclassification error rate than the two-stage model. The one-stage model is more accurate than the two-stage model.
Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680400 Satellite Rainfall Prediction Techniques - A State of the Art Review
Authors: S. Sarumathi, N. Shanthi, S. Vidhya
Abstract:
In the present world, predicting rainfall is considered to be an essential and also a challenging task. Normally, the climate and rainfall are presumed to have non-linear as well as intricate phenomena. For predicting accurate rainfall, we necessitate advanced computer modeling and simulation. When there is an enhanced understanding of the spatial and temporal distribution of precipitation then it becomes enrichment to applications such as hydrologic, climatic and ecological. Conversely, there may be some kind of challenges occur in the community due to some application which results in the absence of consistent precipitation observation in remote and also emerging region. This survey paper provides a multifarious collection of methodologies which are epitomized by various researchers for predicting the rainfall. It also gives information about some technique to forecast rainfall, which is appropriate to all methods like numerical, traditional and statistical.
Keywords: Satellite Image, Segmentation, Feature Extraction, Classification, Clustering, Precipitation Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227399 Novel GPU Approach in Predicting the Directional Trend of the S&P 500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-ofsample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.
Keywords: Financial algorithm, GPU, S&P 500, stock market prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736398 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979397 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection
Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi
Abstract:
It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, hybrid, filter-wrapper, phishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179396 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.
Keywords: Data mining, knowledge discovery in databases, prediction models, student success.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540395 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data
Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch
Abstract:
It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524394 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.
Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238393 Adaptive Educational Hypermedia System for High School Students Based on Learning Styles
Authors: Stephen Akuma, Timothy Ndera
Abstract:
Information seekers get “lost in hyperspace” due to the voluminous documents updated daily on the internet. Adaptive Hypermedia Systems (AHS) are used to direct learners to their target goals. One of the most common AHS designed to help information seekers to overcome the problem of information overload is the Adaptive Education Hypermedia System (AEHS). However, this paper focuses on AEHS that adopts the learning preference of high school students and deliver learning content according to this preference throughout their learning experience. The research developed a prototype system for predicting students’ learning preference from the Visual, Aural, Read-Write and Kinesthetic (VARK) learning style model and adopting the learning content suitable to their preference. The predicting strength of several classifiers was compared and we found Support Vector Machine (SVM) to be more accurate in predicting learning style based on users’ preferences.
Keywords: Hypermedia, adaptive education, learning style, lesson content, user profile, prediction, feedback, adaptive hypermedia, learning style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851392 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).
Keywords: Time series modelling, stochastic processes, ARIMA model, Karkheh River.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044391 Urban Management and China's Municipal Pattern
Authors: Ling Zheng, Yaping Wei, Kang Cao, Zheng Huang, Songpo Shi
Abstract:
Not only is municipal pattern the institution basement of urban management, but it also determines the forms of the management results. There-s a considerable possibility of bankruptcy for China-s current municipal pattern as it-s an overdraft of land deal in fact. Based on the analysis of China-s current municipal pattern, the passage proposed an assumption of a new pattern verified legitimacy by conceptual as well as econometric models. Conclusion is: the added supernumerary value of investment in public goods was not included in China-s current municipal pattern, but hidden in the rising housing prices; we should set housing tax or municipal tax to optimize the municipal pattern, to correct the behavior of local governments and to ensure the regular development of China-s urbanization.
Keywords: Urban management, China's municipal pattern, land financial institution, housing tax, Public goods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861390 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.
Keywords: Degradation signal, drill-bit breakage, random forest, multinomial logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244389 Improving Academic Performance Prediction using Voting Technique in Data Mining
Authors: Ikmal Hisyam Mohamad Paris, Lilly Suriani Affendey, Norwati Mustapha
Abstract:
In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student-s class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance.Keywords: Classification, Data Mining, Prediction, Combination of Multiple Classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756388 Predicting Oil Content of Fresh Palm Fruit Using Transmission-Mode Ultrasonic Technique
Authors: Sutthawee Suwannarat, Thanate Khaorapapong, Mitchai Chongcheawchamnan
Abstract:
In this paper, an ultrasonic technique is proposed to predict oil content in a fresh palm fruit. This is accomplished by measuring the attenuation based on ultrasonic transmission mode. Several palm fruit samples with known oil content by Soxhlet extraction (ISO9001:2008) were tested with our ultrasonic measurement. Amplitude attenuation data results for all palm samples were collected. The Feedforward Neural Networks (FNNs) are applied to predict the oil content for the samples. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the FNN model for predicting oil content percentage are 7.6186 and 5.2287 with the correlation coefficient (R) of 0.9193.Keywords: Non-destructive, ultrasonic testing, oil content, fresh palm fruit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807387 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics
Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra
Abstract:
Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.
Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574386 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085385 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780384 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137383 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile
Authors: V. Ghadamyari, F. Samadi, F. Kowsary
Abstract:
An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834382 Prediction of Soil Hydraulic Conductivity from Particle-Size Distribution
Authors: A.F. Salarashayeri, M. Siosemarde
Abstract:
Hydraulic conductivity is one parameter important for predicting the movement of water and contaminants dissolved in the water through the soil. The hydraulic conductivity is measured on soil samples in the lab and sometimes tests carried out in the field. The hydraulic conductivity has been related to soil particle diameter by a number of investigators. In this study, 25 set of soil samples with sand texture. The results show approximately success in predicting hydraulic conductivity from particle diameters data. The following relationship obtained from multiple linear regressions on data (R2 = 0.52): Where d10, d50 and d60, are the soil particle diameter (mm) that 10%, 50% and 60% of all soil particles are finer (smaller) by weight and Ks, saturated hydraulic conductivity is expressed in m/day. The results of regression analysis showed that d10 play a more significant role with respect to Ks, saturated hydraulic conductivity (m/day), and has been named as the effective parameter in Ks calculation.Keywords: hydraulic conductivity, particle diameter, particle-size distribution and soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9008381 A Software Framework for Predicting Oil-Palm Yield from Climate Data
Authors: Mohd. Noor Md. Sap, A. Majid Awan
Abstract:
Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980380 Calculation of Density for Refrigerant Mixtures in Sub Critical Regions for Use in the Buildings
Authors: Mohammad Reza Mobinipouya, Zahra Barzegar
Abstract:
Accurate and comprehensive thermodynamic properties of pure and mixture of refrigerants are in demand by both producers and users of these materials. Information about thermodynamic properties is important initially to qualify potential candidates for working fluids in refrigeration machinery. From practical point of view, Refrigerants and refrigerant mixtures are widely used as working fluids in many industrial applications, such as refrigerators, heat pumps, and power plants The present work is devoted to evaluating seven cubic equations of state (EOS) in predicting gas and liquid phase volumetric properties of nine ozone-safe refrigerants both in super and sub-critical regions. The evaluations, in sub-critical region, show that TWU and PR EOS are capable of predicting PVT properties of refrigerants R32 within 2%, R22, R134a, R152a and R143a within 1% and R123, R124, R125, TWU and PR EOS's, from literature data are 0.5% for R22, R32, R152a, R143a, and R125, 1% for R123, R134a, and R141b, and 2% for R124. Moreover, SRK EOS predicts PVT properties of R22, R125, and R123 to within aforementioned errors. The remaining EOS's predicts volumetric properties of this class of fluids with higher errors than those above mentioned which are at most 8%.In general, the results are in favor of the preference of TWU and PR EOS over other remaining EOS's in predicting densities of all mentioned refrigerants in both super and sub critical regions. Typically, this refrigerant is known to offer advantages such as ozone depleting potential equal to zero, Global warming potential equal to 140, and no toxic.
Keywords: Refrigerant, cooling systems, Sub-CriticalRegions, volumetric properties, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159379 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012378 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364377 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation
Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi
Abstract:
In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.
Keywords: CFD, RANS, cavitation, fuel, injector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547376 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174375 Predicting the Life Cycle of Complex Technical Systems (CTS)
Authors: Khalil A. Yaghi, Samer Barakat
Abstract:
Complex systems are composed of several plain interacting independent entities. Interaction between these entities creates a unified behavior at the global level that cannot be predicted by examining the behavior of any single individual component of the system. In this paper we consider a welded frame of an automobile trailer as a real example of Complex Technical Systems, The purpose of this paper is to introduce a Statistical method for predicting the life cycle of complex technical systems. To organize gathering of primary data for modeling the life cycle of complex technical systems an “Automobile Trailer Frame" were used as a prototype in this research. The prototype represents a welded structure of several pieces. Both information flows underwent a computerized analysis and classification for the acquisition of final results to reach final recommendations for improving the trailers structure and their operational conditions.
Keywords: Complex Technical System (CTS), AutomobileTrailer Frame, Automobile Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235