Search results for: Horizontal pipeline
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 438

Search results for: Horizontal pipeline

438 Characteristics Analysis of Thermal Resistance of Cryogenic Pipeline in Vacuum Environment

Authors: Wang Zijuan, Ding Wenjing, Liu Ran

Abstract:

If an unsteady heat transfer or heat impulse happens in part of the cryogenic pipeline system of large space environment simulation equipment while running in vacuum environment, it will lead to abnormal flow of the cryogenic fluid in the pipeline. When the situation gets worse, the cryogenic fluid in the pipeline will have phase change and a gas block which results in the malfunction of the cryogenic pipeline system. Referring to the structural parameter of a typical cryogenic pipeline system and the basic equation, an analytical model and a calculation model for cryogenic pipeline system can be built. The various factors which influence the thermal resistance of a cryogenic pipeline system can be analyzed and calculated by using the qualitative analysis relation deduced for thermal resistance of pipeline. The research conclusion could provide theoretical support for the design and operation of a cryogenic pipeline system

Keywords: pipeline, vacuum, vapor quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
437 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study

Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal

Abstract:

In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.

Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5711
436 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines

Authors: T. Davitashvili, G. Gubelidze

Abstract:

In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.

Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
435 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal

Abstract:

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4249
434 Effect of Corrosion on Hydrocarbon Pipelines

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The demand of hydrocarbons has increased the construction of pipelines and the protection of the physical and mechanical integrity of the already existing infrastructure. Corrosion is the main reason of failures in the pipeline and it is mostly produced by acid (HCOOCH3). In this basis, a CFD code was used, in order to study the corrosion of internal wall of hydrocarbons pipeline. In this situation, the corrosion phenomenon shows a growing deposit, which causes defect damages (welding or fabrication) at diverse positions along the pipeline. The solution of the pipeline corrosion is based on the diminution of the Naphthenic acid.

Keywords: Pipeline, corrosion, Naphthenic acid (NA), CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3349
433 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline

Authors: Zuodong Liang, Dong-Sheng Jeng

Abstract:

Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.

Keywords: Pore pressure, 3D wave model, seabed liquefaction, pipeline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
432 Development of a Pipeline Monitoring System by Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won

Abstract:

To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
431 Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications

Authors: Mohamad Azmi Haniffa, Fakhruldin Mohd Hashim

Abstract:

Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.

Keywords: Pipeline Inspection Gauge (PIG), In Line Inspection Tools (ILI), PIG motion, PIG speed control system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330
430 Design of High-speed Modified Booth Multipliers Operating at GHz Ranges

Authors: Soojin Kim, Kyeongsoon Cho

Abstract:

This paper describes the pipeline architecture of high-speed modified Booth multipliers. The proposed multiplier circuits are based on the modified Booth algorithm and the pipeline technique which are the most widely used to accelerate the multiplication speed. In order to implement the optimally pipelined multipliers, many kinds of experiments have been conducted. The speed of the multipliers is greatly improved by properly deciding the number of pipeline stages and the positions for the pipeline registers to be inserted. We described the proposed modified Booth multiplier circuits in Verilog HDL and synthesized the gate-level circuits using 0.13um standard cell library. The resultant multiplier circuits show better performance than others. Since the proposed multipliers operate at GHz ranges, they can be used in the systems requiring very high performance.

Keywords: multiplier, pipeline, high-speed, modified Boothalgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
429 UML Modeling for Instruction Pipeline Design

Authors: Vipin Saxena, Deepa Raj

Abstract:

Unified Modeling language (UML) is one of the important modeling languages used for the visual representation of the research problem. In the present paper, UML model is designed for the Instruction pipeline which is used for the evaluation of the instructions of software programs. The class and sequence diagrams are designed & performance is evaluated for instructions of a sample program through a case study.

Keywords: UML, Instruction Pipeline, Class Diagram &Sequence Diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
428 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.

Keywords: Stress Corrosion Crack, Direct Assessment, Disbondment, Transgranular SCC, Compressor Station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
427 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate

Authors: R. Kiš, M. Malcho, M. Janovcová

Abstract:

This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behavior of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.

Keywords: Orifice plate, high-pressure pipeline, natural gas, CFD analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3901
426 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: Natural surfactant, crude oil, rheology, CFD, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
425 Design and Validation of an Aerodynamic Model of the Cessna Citation X Horizontal Stabilizer Using both OpenVSP and Digital Datcom

Authors: Marine Segui, Matthieu Mantilla, Ruxandra Mihaela Botez

Abstract:

This research is the part of a major project at the Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE) aiming to improve a Cessna Citation X aircraft cruise performance with an application of the morphing wing technology on its horizontal tail. However, the horizontal stabilizer of the Cessna Citation X turns around its span axis with an angle between -8 and 2 degrees. Within this range, the horizontal stabilizer generates certainly some unwanted drag. To cancel this drag, the LARCASE proposes to trim the aircraft with a horizontal stabilizer equipped by a morphing wing technology. This technology aims to optimize aerodynamic performances by changing the conventional horizontal tail shape during the flight. As a consequence, this technology will be able to generate enough lift on the horizontal tail to balance the aircraft without an unwanted drag generation. To conduct this project, an accurate aerodynamic model of the horizontal tail is firstly required. This aerodynamic model will finally allow precise comparison between a conventional horizontal tail and a morphed horizontal tail results. This paper presents how this aerodynamic model was designed. In this way, it shows how the 2D geometry of the horizontal tail was collected and how the unknown airfoil’s shape of the horizontal tail has been recovered. Finally, the complete horizontal tail airfoil shape was found and a comparison between aerodynamic polar of the real horizontal tail and the horizontal tail found in this paper shows a maximum difference of 0.04 on the lift or the drag coefficient which is very good. Aerodynamic polar data of the aircraft horizontal tail are obtained from the CAE Inc. level D research aircraft flight simulator of the Cessna Citation X.

Keywords: Aerodynamic, Cessna, Citation X, coefficient, Datcom, drag, lift, longitudinal, model, OpenVSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
424 Soil Properties after Plowing with Vertical and Horizontal Axis Rotavator

Authors: M. Azadbakht, B. Azadbakht, R. Janzade Galogah, A. Kiapei, H. Jafari

Abstract:

In this research, performance of rotavator with horizontal rotary axis and vertical rotary axis has been evaluated and compared. The mean weight diameter (MWD), cross-sectional area disturbed and cone index of soil investigated. Factorial experiments based on a randomized complete block with 18 treatments, three different velocities 2.2, 3.5, 6.1 km/h; three different depth of 5, 10, 15cm and with two rotary plows horizontal axis and vertical axis with three replications were used. Result showed that maximum MWD in 6.1 km/h and 15cm of depth were 55.6 and 52.5mm for horizontal axis rotavator, respectively. The minimum MWD in 2.2 km/h and 5cm of depth for vertical axis rotavator were 34.9 and 35.1mm, respectively. The values of cone index 1861.1 and 2339.5 kPa for vertical axis rotavator and horizontal axis rotavator were obtained, respectively, also the values of cross-sectional area disturbed 687 and 497.2cm2 for vertical axis rotavator and horizontal axis rotavator were obtained, respectively.

Keywords: Horizontal rotary axis, vertical rotary axis, rotavator, MWD, cone index, cross-sectional area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
423 Pressure Capacity Reduction of X52 Pipeline Steel Damaged by a Semi-Elliptical Pitting Corrosion

Authors: S. M. Kazerouni Sangi, Y. Gholipour

Abstract:

Steel made pipelines with different diameters are used for transmitting oil and gas which in many cases are buried in soil under the sea bed or immersed in sea water. External corrosion of pipes is an important form of deterioration due to the aggressive environment of sea water. Corrosion normally results in pits. Hence, using the finite element method, namely ABAQUS software, this paper estimates the amount of pressure capacity reduction of a pipecontaining a semi-elliptical pitting corrosion and the rate of corrosion during the pipeline life of 25 years.

Keywords: Petroleum Transmission, Pipeline, PressureCapacity, Semi-Elliptical Pitting Corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
422 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems

Authors: I. Abuiziah, N. Shakarneh

Abstract:

Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.

Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5100
421 Simulating Flow Transients in Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber

Abstract:

In water pipeline systems, the flow control is an integrated part of the operation, for instance, opening and closing the valves, starting and stopping the pumps, when these operations very quickly performed, they shall cause the hydraulic transient phenomena, which may cause pump and, valve failures and catastrophic pipe ruptures. Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems. Transient control has become an essential requirement for ensuring safe operation of water pipeline systems. An accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic methods. This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Also, it provides the influence of using the protection devices to protect the pipeline systems from damaging due to the gain pressure which occur in the transient state. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Keywords: Flow transient, Pipeline, Air chamber, Numerical model, Protection devices, Elastic method, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4407
420 Power Generation Scheduling of Thermal Units Considering Gas Pipelines Constraints

Authors: Sara Mohtashami, Habib Rajabi Mashhadi

Abstract:

With the growth of electricity generation from gas energy gas pipeline reliability can substantially impact the electric generation. A physical disruption to pipeline or to a compressor station can interrupt the flow of gas or reduce the pressure and lead to loss of multiple gas-fired electric generators, which could dramatically reduce the supplied power and threaten the power system security. Gas pressure drops during peak loading time on pipeline system, is a common problem in network with no enough transportation capacity which limits gas transportation and causes many problem for thermal domain power systems in supplying their demand. For a feasible generation scheduling planning in networks with no sufficient gas transportation capacity, it is required to consider gas pipeline constraints in solving the optimization problem and evaluate the impacts of gas consumption in power plants on gas pipelines operating condition. This paper studies about operating of gas fired power plants in critical conditions when the demand of gas and electricity peak together. An integrated model of gas and electric model is used to consider the gas pipeline constraints in the economic dispatch problem of gas-fueled thermal generator units.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
419 Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed

Authors: Yiming Jin, Yuanhao Gao

Abstract:

In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative.

Keywords: Vortex-induced vibrations, marine pipeline, seabed, sub-harmonic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
418 Photogrammetric Survey on the Natural Gas Pipeline Projects of Iran-Turkey- Europe (ITE)

Authors: Ferruh Yildiz

Abstract:

The ITE Project is a project that has 1800 km length and across the Turkey's land through east to west. The project of pipeline enters geographically from Iran to Doğubayazit (Turkey) in the east, exits to Greece from Ipsala province of Turkey in the west. This project is the one of the international projects in such scale that provides the natural gas of Iran and Caspian Sea through the European continent. In this investigation, some information will be given about the methods used to verify the direction of the pipeline and the technical properties of the results obtained. The cost of project itself entirely depends on the direction of the pipeline which would be as short as possible and the specifications of the land cover. Production standards of 1/2000 scaled digital orthophoto and vectoral maps as a results of the use of map production materials and methods (such as high resolution satellite images, and digital aerial images captured from digital aerial cameras), will also be given in this report. According to Turkish national map production standards, TM ((Transversal Mercator, 3 degree) projection is used for large scale map and UTM (Universal Transversal Mercator, 6 degree) is used for small scale map production standards. Some information is also given about the projection used in the ITE natural gas pipeline project.

Keywords: Digital Image Processing, Natural Gas Pipe Line, Photogrammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
417 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
416 Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig

Authors: Seong-Mo An, Rohit Ramesh, Young-Sook Lee, Wan-Young Chung

Abstract:

The proper assessment of interaxial distance and convergence control are important factors in stereoscopic imaging technology to make an efficient 3D image. To control interaxial distance and convergence for efficient 3D shooting, horizontal 3D camera rig is designed using some hardware components like 'LM Guide', 'Goniometer' and 'Rotation Stage'. The horizontal 3D camera rig system can be properly aligned by moving the two cameras horizontally in same or opposite directions, by adjusting the camera angle and finally considering horizontal swing as well as vertical swing. In this paper, the relationship between interaxial distance and convergence angle control are discussed and intensive experiments are performed in order to demonstrate an easy and effective 3D shooting.

Keywords: Interaxial, Convergence, Stereoscopic, Horizontal 3D Camera Rig

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
415 Wireless Sensor Networks for Long Distance Pipeline Monitoring

Authors: Augustine C. Azubogu, Victor E. Idigo, Schola U. Nnebe, Obinna S. Oguejiofor, Simon E.

Abstract:

The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are previewed. These are wired sensor networks, RF wireless sensor networks, integrated wired and wireless sensor networks. The reliability of these architectures is discussed. Three reliability factors are used to compare the architectures in terms of network connectivity, continuity of power supply for the network, and the maintainability of the network. The constraints and challenges of wireless sensor networks for monitoring and protecting long distance pipeline infrastructure are discussed.

Keywords: Connectivity, maintainability, reliability, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5141
414 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: Aerodynamics, wind tunnel, turbulence model, lift, drag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
413 Bifurcation Analysis of Horizontal Platform System

Authors: C. C. Wang, N. S. Pai, H. T. Yau, T. T. Liao, M. J. Jang, C. W. Lee, W. M. Hong

Abstract:

Horizontal platform system (HPS) is popularly applied in offshore and earthquake technology, but it is difficult and time-consuming for regulation. In order to understand the nonlinear dynamic behavior of HPS and reduce the cost when using it, this paper employs differential transformation method to study the bifurcation behavior of HPS. The numerical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, and chaotic responses. Furthermore, the results reveal the changes which take place in the dynamic behavior of the HPS as the external torque is increased. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of horizontal platform system.

Keywords: horizontal platform system, differentialtransformation method, chaotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
412 Pilot-scale Study of Horizontal Anaerobic Digester for Biogas Production using Food Waste

Authors: Yongsei Lee, Hyunsu Park, Youngseob Yu, Heechan Yoo, Sungin Yoo

Abstract:

A horizontal anaerobic digester was developed and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal digester. A mixer of the horizontal digester was designed to easily remove the sediment in the bottom and scum layers on surface in the digester. Experimental result for 120 days of operation of the pilot plant showed a high removal efficiency of 81.2% for organic substance and high stability during the whole operation period were acquired. Also food waste was treated at high organic loading rates over 4 kg•VS/m3∙day and a methane gas production rate of 0.62 m3/kg•VSremoved was accomplished. The biological desulfurization equipment inside the horizontal digester was proven to be an economic and effective method to reduce the biogas desulfurization cost by removing hydrogen sulfide more than 90% without external desulfurization equipments.

Keywords: Biogas, Biological desulfurization, Horizontal anaerobic digester, Korean food waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
411 Controlling Transient Flow in Pipeline Systems by Desurging Tank with Automatic Air Control

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

Desurging tank with automatic air control “DTAAC” is a water hammer protection device, operates either an open or closed surge tank according to the water level inside the surge tank, with the volume of air trapped in the filling phase, this protection device has the advantages of its easy maintenance, and does not need to run any external energy source (air compressor). A computer program has been developed based on the characteristic method to simulate flow transient phenomena in pressurized water pipeline systems, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurring in this phenomena. The developed model applied to a simple main water pipeline system: pump combined with DTAAC connected to a reservoir.  The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the DTAAC reduces the unfavorable effects of the transients.

Keywords: DTAAC, Flow transient, Numerical model, Pipeline system, Protection devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
410 Analytical Proposal to Damage Assessment of Buried Continuous Pipelines during External Blast Loading

Authors: Danesh Nourzadeh, Sepideh Khorshid, Shiro Takada, Khosrow Bargi

Abstract:

In this paper, transversal vibration of buried pipelines during loading induced by underground explosions is analyzed. The pipeline is modeled as an infinite beam on an elastic foundation, so that soil-structure interaction is considered by means of transverse linear springs along the pipeline. The pipeline behavior is assumed to be ideal elasto-plastic which an ultimate strain value limits the plastic behavior. The blast loading is considered as a point load, considering the affected length at some point of the pipeline, in which the magnitude decreases exponentially with time. A closed-form solution for the quasi-static problem is carried out for both elastic and elasticperfect plastic behaviors of pipe materials. At the end, a comparative study on steel and polyethylene pipes with different sizes buried in various soil conditions, affected by a predefined underground explosion is conducted, in which effect of each parameter is discussed.

Keywords: Beam on elastic foundation, Buried pipelines, External explosion, Non-linear quasi-static solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
409 DeClEx-Processing Pipeline for Tumor Classification

Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba

Abstract:

Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.

Keywords: Machine learning, healthcare, classification, explainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66