Search results for: G. De Luca
22 Characterization of the In0.53Ga0.47As n+nn+ Photodetectors
Authors: Fatima Zohra Mahi, Luca Varani
Abstract:
We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detective parameter for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed by considering the free carries fluctuations. The responsivity and the detection parameter are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.
Keywords: Responsivity, detection parameter, photo-detectors, continuity equation, current noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206221 Gesture Recognition by Data Fusion of Time-of-Flight and Color Cameras
Authors: Piercarlo Dondi, Luca Lombardi, Marco Porta
Abstract:
In the last years numerous applications of Human- Computer Interaction have exploited the capabilities of Time-of- Flight cameras for achieving more and more comfortable and precise interactions. In particular, gesture recognition is one of the most active fields. This work presents a new method for interacting with a virtual object in a 3D space. Our approach is based on the fusion of depth data, supplied by a ToF camera, with color information, supplied by a HD webcam. The hand detection procedure does not require any learning phase and is able to concurrently manage gestures of two hands. The system is robust to the presence in the scene of other objects or people, thanks to the use of the Kalman filter for maintaining the tracking of the hands.Keywords: Gesture recognition, human-computer interaction, Time-of-Flight camera.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194020 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270919 Secondary Organic Contribution to Particles Formed on the Ice Melted Arctic Ocean
Authors: Petri Vaattovaara, Zoran D. Ristovski, Martin Graus, Marcus Müller, EijaAsmi, Luca Di Liberto, StaffanSjögren, Douglas Orsini, Caroline Leck, Ari Laaksonen
Abstract:
Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environment secondary contribution, especially secondary organic contribution, to the particle production and particle growth events and particle properties, consequently effecting on the open ocean, pack ice and ground based regions radiation budget and thus on the feedbacks between arctic biota, particles, clouds, and climate.
Keywords: Arctic Ocean, ice melting, nucleation, secondary organics, clouds, climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149218 Balancing Neural Trees to Improve Classification Performance
Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti
Abstract:
In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122417 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176416 Sensing Characteristics to Acid Vapors of a TPPS Coated Fiber Optic: A Preliminary Analysis
Authors: A. Bahrampour, A. Iadicicco, G. De Luca, M. Giordano, A. Cutolo, L. Monsù Scolaro, A. Cusano
Abstract:
In this work we report on preliminary analysis of a novel optoelectronic gas sensor based on an optical fiber integrated with a tetrakis(4-sulfonatophenyl)porphyrin (TPPS) thin film. The sensitive materials are selectively deposited on the core region of a fiber tip by UV light induced deposition technique. A simple and cheap process which can be easily extended to different porphyrin derivatives. When the TPPS film on the fiber tip is exposed to acid and/or base vapors, dramatic changes occur in the aggregation structure of the dye molecules in the film, from J- to H-type, resulting in a profound modification of their corresponding reflectance spectra. From the achieved experimental results it is evident that the presence of intense and narrow band peaks in the reflected spectra could be monitored to detect hazardous vapors.
Keywords: Optical fiber sensor, Porphyrins, Thin films UV induced deposition, TPPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152715 Robot Vision Application based on Complex 3D Pose Computation
Authors: F. Rotaru, S. Bejinariu, C. D. Niţâ, R. Luca, I. Pâvâloi, C. Lazâr
Abstract:
The paper presents a technique suitable in robot vision applications where it is not possible to establish the object position from one view. Usually, one view pose calculation methods are based on the correspondence of image features established at a training step and exactly the same image features extracted at the execution step, for a different object pose. When such a correspondence is not feasible because of the lack of specific features a new method is proposed. In the first step the method computes from two views the 3D pose of feature points. Subsequently, using a registration algorithm, the set of 3D feature points extracted at the execution phase is aligned with the set of 3D feature points extracted at the training phase. The result is a Euclidean transform which have to be used by robot head for reorientation at execution step.Keywords: features correspondence, registration algorithm, robot vision, triangulation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147014 Computer Aided Detection on Mammography
Authors: Giovanni Luca Masala
Abstract:
A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192613 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec
Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro
Abstract:
In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169212 Environmental Capacity and Sustainability of European Regional Airports: A Case Study
Authors: Nicola Gualandi, Luca Mantecchini, Davide Serrau
Abstract:
Airport capacity has always been perceived in the traditional sense as the number of aircraft operations during a specified time corresponding to a tolerable level of average delay and it mostly depends on the airside characteristics, on the fleet mix variability and on the ATM. The adoption of the Directive 2002/30/EC in the EU countries drives the stakeholders to conceive airport capacity in a different way though. Airport capacity in this sense is fundamentally driven by environmental criteria, and since acoustical externalities represent the most important factors, those are the ones that could pose a serious threat to the growth of airports and to aviation market itself in the short-medium term. The importance of the regional airports in the deregulated market grew fast during the last decade since they represent spokes for network carriers and a preferential destination for low-fares carriers. Not only regional airports have witnessed a fast and unexpected growth in traffic but also a fast growth in the complaints for the nuisance by the people living near those airports. In this paper the results of a study conducted in cooperation with the airport of Bologna G. Marconi are presented in order to investigate airport acoustical capacity as a defacto constraint of airport growth.Keywords: Airport acoustical capacity, airport noise, air traffic noise, sustainability of regional airports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165611 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235910 Artificial Intelligence Techniques applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14249 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles
Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei
Abstract:
Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.
Keywords: Gold nanoparticles, Citrate method, Turkevich organizer theory, population balance modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10028 Procedure for Impact Testing of Fused Recycled Glass
Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi
Abstract:
Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.
Keywords: Construction materials, drop weight impact, impact testing, recycled glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15337 Critical Approach to Define the Architectural Structure of a Health Prototype in a Rural Area of Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Luca Preis
Abstract:
A primary healthcare facility in developing countries should be a multifunctional space able to respond to different requirements: Flexibility, modularity, aggregation and reversibility. These basic features could be better satisfied if applied to an architectural artifact that complies with the typological, figurative and constructive aspects of the context in which it is located. Therefore, the purpose of this paper is to identify a procedure that can define the figurative aspects of the architectural structure of the health prototype for the marginal areas of developing countries through a critical approach. The application context is the rural areas of the Northeast of Bahia in Brazil. The prototype should be located in the rural district of Quingoma, in the municipality of Lauro de Freitas, a particular place where there is still a cultural fusion of black and indigenous populations. Based on the historical analysis of settlement strategies and architectural structures in spaces of public interest or collective use, this paper aims to provide a procedure able to identify the categories and rules underlying typological and figurative aspects, in order to detect significant and generalizable elements, as well as materials and constructive techniques typically adopted in the rural areas of Brazil. The object of this work is therefore not only the recovery of certain constructive approaches but also the development of a procedure that integrates the requirements of the primary healthcare prototype with its surrounding economic, social, cultural, settlement and figurative conditions.Keywords: Architectural typology, Developing countries, Local construction techniques, Primary health care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9436 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca De Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes a larger monitored area available. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary, the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.
Keywords: Data compression, ultrasonic communication, guided waves, FEM analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3785 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13974 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication
Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca
Abstract:
Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.
Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10693 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis
Abstract:
A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.Keywords: Primary health care, developing countries, policy health planning, settlement strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9812 Monte Carlo and Biophysics Analysis in a Criminal Trial
Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano
Abstract:
In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.Keywords: Biophysical analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6141 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel
Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust
Abstract:
Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.Keywords: Aerodynamic interaction, drag cycle, drag force, frontal area, speed skating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038