Search results for: Evolutionary Spectrum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 648

Search results for: Evolutionary Spectrum

648 Molecular Evolutionary Analysis of Yeast Protein Interaction Network

Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka

Abstract:

To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.

Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
647 Improved Estimation of Evolutionary Spectrum based on Short Time Fourier Transforms and Modified Magnitude Group Delay by Signal Decomposition

Authors: H K Lakshminarayana, J S Bhat, H M Mahesh

Abstract:

A new estimator for evolutionary spectrum (ES) based on short time Fourier transform (STFT) and modified group delay function (MGDF) by signal decomposition (SD) is proposed. The STFT due to its built-in averaging, suppresses the cross terms and the MGDF preserves the frequency resolution of the rectangular window with the reduction in the Gibbs ripple. The present work overcomes the magnitude distortion observed in multi-component non-stationary signals with STFT and MGDF estimation of ES using SD. The SD is achieved either through discrete cosine transform based harmonic wavelet transform (DCTHWT) or perfect reconstruction filter banks (PRFB). The MGDF also improves the signal to noise ratio by removing associated noise. The performance of the present method is illustrated for cross chirp and frequency shift keying (FSK) signals, which indicates that its performance is better than STFT-MGDF (STFT-GD) alone. Further its noise immunity is better than STFT. The SD based methods, however cannot bring out the frequency transition path from band to band clearly, as there will be gap in the contour plot at the transition. The PRFB based STFT-SD shows good performance than DCTHWT decomposition method for STFT-GD.

Keywords: Evolutionary Spectrum, Modified Group Delay, Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect Reconstruction Filter Banks, Short Time Fourier Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
646 Evolutionary Cobreeding of Cooperative and Competitive Subcultures

Authors: Emilia Nercissians

Abstract:

Neoclassical and functionalist explanations of self organization in multiagent systems have been criticized on several accounts including unrealistic explication of overadapted agents and failure to resolve problems of externality. The paper outlines a more elaborate and dynamic model that is capable of resolving these dilemmas. An illustrative example where behavioral diversity is cobred in a repeated nonzero sum task via evolutionary computing is presented.

Keywords: evolutionary stability, externalities, neofunctionalism, prisoners' dilemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
645 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
644 Evolutionary Algorithms for the Multiobjective Shortest Path Problem

Authors: José Maria A. Pangilinan, Gerrit K. Janssens

Abstract:

This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem.

Keywords: Multiobjective evolutionary optimization, geneticalgorithms, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
643 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

Authors: Alberto Hananel

Abstract:

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
642 Evolutionary Decision Trees and Software Metrics for Module Defects Identification

Authors: Monica Chiş

Abstract:

Software metric is a measure of some property of a piece of software or its specification. The aim of this paper is to present an application of evolutionary decision trees in software engineering in order to classify the software modules that have or have not one or more reported defects. For this some metrics are used for detecting the class of modules with defects or without defects.

Keywords: Evolutionary decision trees, decision trees, softwaremetrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
641 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
640 Universal Method for Timetable Construction based on Evolutionary Approach

Authors: Maciej Norberciak

Abstract:

Timetabling problems are often hard and timeconsuming to solve. Most of the methods of solving them concern only one problem instance or class. This paper describes a universal method for solving large, highly constrained timetabling problems from different domains. The solution is based on evolutionary algorithm-s framework and operates on two levels – first-level evolutionary algorithm tries to find a solution basing on given set of operating parameters, second-level algorithm is used to establish those parameters. Tabu search is employed to speed up the solution finding process on first level. The method has been used to solve three different timetabling problems with promising results.

Keywords: Evolutionary algorithms, tabu search, timetabling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
639 Performance Evaluation of Qos Parameters in Cognitive Radio Using Genetic Algorithm

Authors: Maninder Jeet Kaur, Moin Uddin, Harsh K. Verma

Abstract:

The efficient use of available licensed spectrum is becoming more and more critical with increasing demand and usage of the radio spectrum. This paper shows how the use of spectrum as well as dynamic spectrum management can be effectively managed and spectrum allocation schemes in the wireless communication systems be implemented and used, in future. This paper would be an attempt towards better utilization of the spectrum. This research will focus on the decision-making process mainly, with an assumption that the radio environment has already been sensed and the QoS requirements for the application have been specified either by the sensed radio environment or by the secondary user itself. We identify and study the characteristic parameters of Cognitive Radio and use Genetic Algorithm for spectrum allocation. Performance evaluation is done using MATLAB toolboxes.

Keywords: Cognitive Radio, Fitness Functions, Fuzzy Logic, Quality of Service (QoS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
638 Speed Control of Permanent Magnet Synchronous Motor Using Evolutionary Fuzzy PID Controller

Authors: M. Umabharathi, S. Vijayabaskar

Abstract:

Evolutionary Fuzzy PID Speed Controller for Permanent Magnet Synchronous Motor (PMSM) is developed to achieve the Speed control of PMSM in Closed Loop operation and to deal with the existence of transients. Consider a Fuzzy PID control design problem, based on common control Engineering Knowledge. If the transient error is big, that Good transient performance can be obtained by increasing the P and I gains and decreasing the D gains. To autotune the control parameters of the Fuzzy PID controller, the Evolutionary Algorithms (EA) are developed. EA based Fuzzy PID controller provides better speed control and guarantees the closed loop stability. The Evolutionary Fuzzy PID controller can be implemented in real time Applications without any concern about instabilities that leads to system failure or damage.

Keywords: Evolutionary Algorithm (EA), Fuzzy system, Genetic Algorithm (GA), Membership, Permanent Magnet Synchronous Motor (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
637 Wavelet-Based Spectrum Sensing for Cognitive Radios using Hilbert Transform

Authors: Shiann-Shiun Jeng, Jia-Ming Chen, Hong-Zong Lin, Chen-Wan Tsung

Abstract:

For cognitive radio networks, there is a major spectrum sensing problem, i.e. dynamic spectrum management. It is an important issue to sense and identify the spectrum holes in cognitive radio networks. The first-order derivative scheme is usually used to detect the edge of the spectrum. In this paper, a novel spectrum sensing technique for cognitive radio is presented. The proposed algorithm offers efficient edge detection. Then, simulation results show the performance of the first-order derivative scheme and the proposed scheme and depict that the proposed scheme obtains better performance than does the first-order derivative scheme.

Keywords: cognitive radio, Spectrum Sensing, wavelet, edgedetection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
636 Linear Maps That Preserve Left Spectrum of Diagonal Quaternionic Matrices

Authors: Geng Yuan, Yiwan Guo, Fahui Zhai, Shuhua Zhang

Abstract:

In this paper, we discuss some properties of left spectrum and give the representation of linear preserver map the left spectrum of diagonal quaternionic matrices.

Keywords: Quaternionic matrix, left spectrum, linear preserver map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
635 Mining Sequential Patterns Using Hybrid Evolutionary Algorithm

Authors: Mourad Ykhlef, Hebah ElGibreen

Abstract:

Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.

Keywords: Genetic Algorithm, Hybrid Evolutionary Algorithm, Particle Swarm Optimization algorithm, Sequential Pattern mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
634 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
633 Evolutionary Dynamics on Small-World Networks

Authors: Jan Rychtar, Brian Stadler

Abstract:

We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.

Keywords: evolutionary dynamics, small-world networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
632 Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

Authors: Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova

Abstract:

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.

Keywords: Evolvable hardware, evolutionary algorithm, digitallogic circuit, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
631 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers

Authors: Thomas Fuhrmann

Abstract:

In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
630 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as Pf Vs Pd for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: Spectrum sensing, Energy detection, fading channels, Probability of detection, probability of false alarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
629 Using Memetic Algorithms for the Solution of Technical Problems

Authors: Ulrike Völlinger, Erik Lehmann, Rainer Stark

Abstract:

The intention of this paper is, to help the user of evolutionary algorithms to adapt them easier to their problem at hand. For a lot of problems in the technical field it is not necessary to reach an optimum solution, but to reach a good solution in time. In many cases the solution is undetermined or there doesn-t exist a method to determine the solution. For these cases an evolutionary algorithm can be useful. This paper intents to give the user rules of thumb with which it is easier to decide if the problem is suitable for an evolutionary algorithm and how to design them.

Keywords: Multi criteria optimization, Memetic algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
628 Spherical Spectrum Properties of Quaternionic Operators

Authors: Yiwan Guo, Fahui Zhai

Abstract:

In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.

Keywords: Spherical spectrum, Quaternionic operator, Upper semi-continuity, Direct sum of operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
627 Partial 3D Reconstruction using Evolutionary Algorithms

Authors: Mónica Pérez-Meza, Rodrigo Montúfar-Chaveznava

Abstract:

When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.

Keywords: 3D Reconstruction, Computer Vision, EvolutionaryAlgorithms, Vision Stereo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
626 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data

Authors: Rameswar Debnath, Haruhisa Takahashi

Abstract:

An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.

Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
625 The Mutated Distance between Two Mixture Trees

Authors: Wan Chian Li, Justie Su-Tzu Juan, Yi-Chun Wang, Shu-Chuan Chen

Abstract:

The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are O(n2 × max{h(T1), h(T2)}) and O(n2), respectively

Keywords: evolutionary tree, mixture tree, mutated site, distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
624 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations

Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi

Abstract:

An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .

Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
623 Self-Organizing Maps in Evolutionary Approachmeant for Dimensioning Routes to the Demand

Authors: J.-C. Créput, A. Koukam, A. Hajjam

Abstract:

We present a non standard Euclidean vehicle routing problem adding a level of clustering, and we revisit the use of self-organizing maps as a tool which naturally handles such problems. We present how they can be used as a main operator into an evolutionary algorithm to address two conflicting objectives of route length and distance from customers to bus stops minimization and to deal with capacity constraints. We apply the approach to a real-life case of combined clustering and vehicle routing for the transportation of the 780 employees of an enterprise. Basing upon a geographic information system we discuss the influence of road infrastructures on the solutions generated.

Keywords: Evolutionary algorithm, self-organizing map, clustering and vehicle routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
622 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
621 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

Authors: Ali Ganoun

Abstract:

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
620 Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Authors: Krzysztof Walczak

Abstract:

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
619 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276