Search results for: Crystalline TiO2
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 186

Search results for: Crystalline TiO2

186 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: Crystalline TiO2, sonochemical mechanism, sol-gel reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
185 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont

Abstract:

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
184 Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films

Authors: M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki

Abstract:

In this investigation, anatase TiO2 thin films were grown by radio frequency magnetron sputtering on glass substrates at a high sputtering pressure and room temperature. The anatase films were then annealed at 300-600 °C in air for a period of 1 hour. To examine the structure and morphology of the films, X-ray diffraction (XRD) and atomic force microscopy (AFM) methods were used respectively. From X-ray diffraction patterns of the TiO2 films, it was found that the as-deposited film showed some differences compared with the annealed films and the intensities of the peaks of the crystalline phase increased with the increase of annealing temperature. From AFM images, the distinct variations in the morphology of the thin films were also observed. The optical constants were characterized using the transmission spectra of the films obtained by UV-VIS-IR spectrophotometer. Besides, optical thickness of the film deposited at room temperature was calculated and cross-checked by taking a cross-sectional image through SEM. The optical band gaps were evaluated through Tauc model. It was observed that TiO2 films produced at room temperatures exhibited high visible transmittance and transmittance decreased slightly with the increase of annealing temperatures. The films were found to be crystalline having anatase phase. The refractive index of the films was found from 2.31-2.35 in the visible range. The extinction coefficient was nearly zero in the visible range and was found to increase with annealing temperature. The allowed indirect optical band gap of the films was estimated to be in the range from 3.39 to 3.42 eV which showed a small variation. The allowed direct band gap was found to increase from 3.67 to 3.72 eV. The porosity was also found to decrease at a higher annealing temperature making the film compact and dense.

Keywords: Titanium dioxide, RF reactive sputtering, Structuralproperties, Surface morphology, Optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3624
183 Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film

Authors: Kowit Suwannahong, Wipada Sanongra, Jittiporn Kruenate, Sarun Phibanchon, Siriuma Jawjit, Wipawee Khamwichit

Abstract:

The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30±5%, 49±4%, 68±5%, 42±6% and 33±5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.

Keywords: Photocatalytic oxidation, Toluene, nano-TiO2/LDPE composite film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
182 TiO2-Zeolite Y Catalyst Prepared Using Impregnation and Ion-Exchange Method for Sonocatalytic Degradation of Amaranth Dye in Aqueous Solution

Authors: Atheel Hassan Alwash, Ahmad Zuhairi Abdullah, Norli Ismail

Abstract:

Characteristics and sonocatalytic activity of zeolite Y catalysts loaded with TiO2 using impregnation and ion exchange methods for the degradation of amaranth dye were investigated. The Ion-exchange method was used to encapsulate the TiO2 into the internal pores of the zeolite while the incorporation of TiO2 mostly on the external surface of zeolite was carried out using the impregnation method. Different characterization techniques were used to elucidate the physicochemical properties of the produced catalysts. The framework of zeolite Y remained virtually unchanged after the encapsulation of TiO2 while the crystallinity of zeolite decreased significantly after the incorporation of 15 wt% of TiO2. The sonocatalytic activity was enhanced by TiO2 incorporation with maximum degradation efficiencies of 50% and 68% for the encapsulated titanium and titanium loaded onto the zeolite, respectively after 120min of reaction. Catalysts characteristics and sonocatalytic behaviors were significantly affected by the preparation method and the location of TiO2 introduced with zeolite structure. Behaviors in the sonocatalytic process were successfully correlated with the characteristics of the catalysts used.

Keywords: Sonocatalytic degradation, TiO2 loaded, ionexchange, impregnation, amaranth dye, process behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4256
181 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/TiO2 Nano-Composite Coatings

Authors: S. Mahdavi, S. R. Allahkaram

Abstract:

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nanoparticles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762
180 Congo Red Photocatalytic Decolourization using Modified Titanium

Authors: A. López–Vásquez, D. Santamaría, M. Tibatá, C. Gómez

Abstract:

A study concerning the photocatalytic decolourization of Congo red (CR) dye, over artificial UV irradiation is presented. Photocatalysts based on a commercial titanium dioxide (TiO2) modified with transition metals (Ni, Cu and Zn) were used. The dopage method used was wet impregnation. A TiO2 sample without salt was subjected to the same hydrothermal treatment to be used as reference. Congo red solutions to several pH conditions (natural and basic) were used to evaluate photocatalytic performance of each doped catalysts. Photodecolourization percentage was measured spectrofotrometically after 3 h of treatment to 499 nm as response variable. Kinetics investigations of photodegradation indicated that reactions obey to Langmuir-Hinshelwood model and pseudo–first order law. The rate constant studies of photocatalytic decolourization reactions for Zn–TiO2 and Cu–TiO2 photocatalysts indicated that in all cases the rate constant of the reaction was higher than that of TiO2 undoped. These results show that nature of the metal modifying the TiO2 influence on the efficiency of the photocatalyst evaluated in process. Ni does not present an additional effect compared with TiO2, while Zn enhances the photoactivity due to its electronic properties.

Keywords: Congo red, Dopage, Photodecolourization, Titanium dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
179 Biodiesel Production from Soybean Oil over TiO2 Supported nano-ZnO

Authors: Mbala Mukenga, Edison Muzenda, Kalala Jalama, Reinout Meijboom

Abstract:

TiO2 supported nano-ZnO catalyst was prepared by deposition-precipitation and tested for the trans-esterification reaction of soybean oil to biodiesel. The TiO2 support stabilized the nano-ZnO in a dispersed form with limited crystallite size compared to the unsupported ZnO. The final ZnO dispersion and crystallite size and the material transfer resistance in the catalyst significantly influenced the supported nano-ZnO catalyst performance.

Keywords: nano-ZnO, soybean oil, TiO2, trans-esterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
178 Anodic Growth of Highly Ordered Titanium Oxide Nanotube Arrays: Effects of Critical Anodization Factors on their Photocatalytic Activity

Authors: Chin-Jung Lin, Yi-Hsien Yu, Szu-Ying Chen, Ya-Hsuan Liou

Abstract:

Highly ordered arrays of TiO2 nanotubes (TiNTs) were grown vertically on Ti foil by electrochemical anodization. We controlled the lengths of these TiNTs from 2.4 to 26.8 ¶üÇóμm while varying the water contents (1, 3, and 6 wt%) of the electrolyte in ethylene glycol in the presence of 0.5 wt% NH4F with anodization for various applied voltages (20–80 V), periods (10–240 min) and temperatures (10–30 oC). For vertically aligned TiNT arrays, not only the increase in their tube lengths, but also their geometric (wall thickness and surface roughness) and crystalline structure lead to a significant influence on photocatalytic activity. The length optimization for methylene blue (MB) photodegradation was 18 μm. Further extending the TiNT length yielded lower photocatalytic activity presumably related to the limited MB diffusion and light-penetration depth into the TiNT arrays. The results indicated that a maximum MB photodegradation rate was obtained for the discrete anatase TiO2 nanotubes with thick and rough walls.

Keywords: Anodic oxidation, nanotube, photocatalytic, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
177 The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light through TiO2 filmand the first surface of CsI then arrive to the second surface of CsI. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: Cesium iodide, AAO, TiO2, Refraction, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
176 Performance Enhancement of Dye-Sensitized Solar Cells by MgO Coating on TiO2 Electrodes

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Thanachayanont

Abstract:

TiO2/MgO composite films were prepared by coating the magnesium acetate solution in the pores of mesoporous TiO2 films using a dip coating method. Concentrations of magnesium acetate solution were varied in a range of 1x10-4 – 1x10-1 M. The TiO2/MgO composite films were characterized by scanning electron microscopy (SEM), transmission electron microscropy (TEM), electrochemical impedance spectroscopy(EIS) , transient voltage decay and I-V test. The TiO2 films and TiO2/MgO composite films were immersed in a 0.3 mM N719 dye solution. The Dye-sensitized solar cells with the TiO2/MgO/N719 structure showed an optimal concentration of magnesium acetate solution of 1x10-3 M resulting in the MgO film estimated thickness of 0.0963 nm and giving the maximum efficiency of 4.85%. The improved efficiency of dyesensitized solar cell was due to the magnesium oxide film as the wide band gap coating decays the electron back transfer to the triiodide electrolyte and reduce charge recombination.

Keywords: Magnesium oxide thin film, TiO2/MgO composite films, Electrochemical Impedance Spectrum, Transient voltage decay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148
175 Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery

Authors: Fitria Rahmawati, Nuryani, Liviana Wijayanti

Abstract:

This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structure. The Li intercalation into TiO2/Graphite and Cu- TiO2/Graphite were analyzed from the changes of its XRD pattern after it was used as electrode during discharging process. The XRD patterns were refined by Le Bail method in order to determine the crystal structure of the prepared materials. A specific capacity and the cycle ability measurement were carried out to study the performance of the prepared materials as negative electrode of the Li-ion battery. The specific capacity was measured during discharging process from fully charged until the cut off voltage. A 300 was used as a load. The result shows that the specific capacity of Li-ion battery with TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is higher than the specific capacity of Li-ion battery with pure graphite as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile deposition of Cu onto TiO2 layer does not increase the specific capacity, and the value even lower than the battery with TiO2/Graphite as electrode. The cycle ability of the prepared battery is only two cycles, due to the Li ribbon which was used as cathode became fragile and easily broken.

Keywords: Cu-TiO2, electrode, graphite substrate, Li-ion battery, TiO2 layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
174 Strong Adhesion and High Wettability at Polyetheretherketone-Resin/Titanium-Dioxide Interface Obtained with Crystal-Orientation Control

Authors: Tomio Iwasaki, Yosuke Kawahito

Abstract:

The adhesion strength and wettability at the interfaces between a polyetheretherketone (PEEK) resin and titanium dioxide (TiO2) have become more important because direct joining of PEEK resin and titanium (Ti), whose surface has usually the oxide (TiO2), is needed not only in vehicles such as airplanes, automobiles, and space vehicles, but also in medical devices such as implants. To realize strong joint between the PEEK resin and TiO2, the dependence of the adhesion strength and wettability on crystal orientations of rutile TiO2 were investigated by using molecular simulations. Molecular dynamics simulations were conducted by combining quantum-mechanics equation of electrons with Newton’s equation of motion of nuclear coordinates (atomic coordinates). By putting a PEEK-resin sphere on a rutile TiO2 surface and by heating the system to 650 K, the contact angles at the interfaces were calculated to evaluate the wettability. After the system is cooled to 300 K from 650 K, to evaluate the adhesin strength, the adhesive fracture energy is calculated as the difference between the energy of the PEEK-TiO2 attached state and that of the PEEK-TiO2 detached state. The results of the contact angles showed that PEEK resin on the TiO2(100) and that on the TiO2(001) surface has low wettability with large contact angles. On the other hand, PEEK resin on the TiO2(110) surface has high wettability with a small contact angle. The results of the adhesive fracture energies showed that the adhesion at the PEEK-resin/TiO2(100) and PEEK-resin/TiO2(001) interfaces are weak. On the other hand, the adhesion at the PEEK-resin/TiO2(110) interface is strong. To clarify the reason that the higher wettability and stronger adhesion are obtained at the PEEK/TiO2(110) interface than at the at the PEEK/TiO2(100) and PEEK/TiO2(001) interfaces, atomic configurations at the interfaces were visualized. The atomic configuration at the PEEK/TiO2(110) interface showed that the lattice-matched coherent interface is realized, and the atomic density is high. On the other hand, the atomic configuration at the PEEK/TiO2(001) interface showed the lattice-unmatched incoherent interface. The atomic configuration at the PEEK/TiO2(100) interface showed that the atomic density is very low although the lattice-matched interface is realized. Therefore, the lattice matching and the high atomic density at the PEEK/TiO2(001) interface are considered to be dominant factors in the high wettability and strong adhesion.

Keywords: Adhesion, direct joining, PEEK, TiO2, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368
173 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
172 Deoxygenation of Beef Fat over Pd Supported Mesoporous TiO2 Catalyst Prepared by Single-Step Sol-Gel Process with Surfactant Template

Authors: Tossaporn Jindarat, Siriporn Jongpatiwut, Somchai Osuwan, Suchada Butnark

Abstract:

Deoxygenation of beef fat for the production of hydrogenated biodiesel is investigated in a high pressure continuous flow fixed bed reactor over palladium-supported mesoporous titania catalyst synthesized via a combined single-step sol-gel process with surfactant-assisted templating method (SATM). The catalyst possessed a mesoporous charactheristic with high surface area and narrow pore size distribution. The main products of all Pd/TiO2 catalysts are n-heptadecane (n-C17) and n-pentadecane (n-C15) resulting from decarbonylation reaction. Pd/TiO2 catalyst synthesized via a combined single-step sol-gel process with SATM (SSSG) gave higher activity and selectivity to the desired products when compared to IWI/SG-TiO2 and IWI/P25-TiO2, respectively. SSSG catalyst gave the average conversion up to 80-90 % and 80 % for the selectivity in diesel range hydrocarbons. This result may cause by the higher surface area and the ability in dispersion of palladium ion in mesoporous of TiO2 during sol-gel process.

Keywords: Beef fat, Deoxygenation, Hydrogenated biodiesel, Pd/TiO2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
171 The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings

Authors: Maryamossadat Bozorgtabar, Mohammadreza Rahimipour, Mehdi Salehi, Mohammadreza Jafarpour

Abstract:

Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.

Keywords: APS, TiO2, Nanostructured Coating, Photoabsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
170 Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather

Authors: Yuchih Lin, Chung-Liang Chang, Hong-Yi Cao, Sheng-Hsuan Hsiao

Abstract:

Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state.

Keywords: mesoporous material, photocatalyst, adsorption, regeneration usage, photocatalytic ozonation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
169 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition

Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov

Abstract:

In this article a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes- in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.

Keywords: Activated carbon, adsorption, copper, ozone decomposition, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
168 Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres

Authors: Charu Dwivedi, V. Dutta

Abstract:

Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 2500C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration was found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

Keywords: TiO2 hollow microspheres, spray pyrolysis, electric field, microscopy, microstructures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
167 The Effects of TiO2 Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties

Authors: T. Sungkaworn, W. Triampo, P. Nalakarn, D. Triampo, I. M. Tang, Y. Lenbury, P. Picha

Abstract:

Semiconductor nanomaterials like TiO2 nanoparticles (TiO2-NPs) approximately less than 100 nm in diameter have become a new generation of advanced materials due to their novel and interesting optical, dielectric, and photo-catalytic properties. With the increasing use of NPs in commerce, to date few studies have investigated the toxicological and environmental effects of NPs. Motivated by the importance of TiO2-NPs that may contribute to the cancer research field especially from the treatment prospective together with the fractal analysis technique, we have investigated the effect of TiO2-NPs on colony morphology in the dark condition using fractal dimension as a key morphological characterization parameter. The aim of this work is mainly to investigate the cytotoxic effects of TiO2-NPs in the dark on the growth of human cervical carcinoma (HeLa) cell colonies from morphological aspect. The in vitro studies were carried out together with the image processing technique and fractal analysis. It was found that, these colonies were abnormal in shape and size. Moreover, the size of the control colonies appeared to be larger than those of the treated group. The mean Df +/- SEM of the colonies in untreated cultures was 1.085±0.019, N= 25, while that of the cultures treated with TiO2-NPs was 1.287±0.045. It was found that the circularity of the control group (0.401±0.071) is higher than that of the treated group (0.103±0.042). The same tendency was found in the diameter parameters which are 1161.30±219.56 μm and 852.28±206.50 μm for the control and treated group respectively. Possible explanation of the results was discussed, though more works need to be done in terms of the for mechanism aspects. Finally, our results indicate that fractal dimension can serve as a useful feature, by itself or in conjunction with other shape features, in the classification of cancer colonies.

Keywords: Tumor growth, Cell colonies, TiO2, Nanoparticles, Fractal, Morphology, Aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
166 Inductance Characteristic of Annealed Titanium Dioxide on Silicon Substrate

Authors: Chih Chin Yang, Lan Hui Huang, Bo Shum Chen, Jia Liang Ke, Chung Lun Tsai

Abstract:

The control of oxygen flow rate during growth of titanium dioxide by mass flow controller in DC plasma sputtering growth system is studied. The impedance of TiO2 films for inductance effect is influenced by annealing time and oxygen flow rate. As annealing time is increased, the inductance of TiO2 film is the more. The growth condition of optimum and maximum inductance for TiO2 film to serve as sensing device are oxygen flow rate of 15 sccm and large annealing time. The large inductance of TiO2 film will be adopted to fabricate the biosensor to obtain the high sensitivity of sensing in biology.

Keywords: Annealed, Inductance, Silicon substarte, Titanium dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
165 Characteristics of Different Solar PV Modules under Partial Shading

Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan

Abstract:

Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.

Keywords: Partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7276
164 Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides

Authors: Junya Takenami, Md. Azhar Uddin, Eiji Sasaoka, Yasushi Shioya, Tsuneyoshi Takase

Abstract:

In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.

Keywords: Mercury removal, Metal and metal oxide sorbents, Methane, Natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
163 Optical Limiting Characteristics of Core-Shell Nanoparticles

Authors: G.Vinitha, A.Ramalingam

Abstract:

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Keywords: hydrothermal method, optical limiting devicesseeded polymerization technique, three-photon type absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
162 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil.

Keywords: Journal bearing, TiO2 nanoparticles, viscosity model, Reynolds equation, load carrying capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3085
161 Submicron Size of Alumina/Titania Tubes for CO2-CH4 Conversion

Authors: Chien-Wan Hun, Shao-Fu Chang, Jheng-En Yang, Chien-Chon Chen, Wern-Dare Jheng

Abstract:

This research provides a systematic way to study and better understand double nano-tubular structure of alunina (Al2O3) and titania (TiO2). The TiO2 NT was prepared by immersing Al2O3 template in 0.02 M titanium fluoride (TiF4) solution (pH=3) at 25 °C for 120 min, followed by annealing at 450 °C for 1 h to obtain anatase TiO2 NT in the Al2O3 template. Large-scale development of film for nanotube-based CO2 capture and conversion can potentially result in more efficient energy harvesting. In addition, the production process will be relatively environmentally friendly. The knowledge generated by this research will significantly advance research in the area of Al2O3, TiO2, CaO, and Ca2O3 nano-structure film fabrication and applications for CO2 capture and conversion. This green energy source will potentially reduce reliance on carbon-based energy resources and increase interest in science and engineering careers.

Keywords: Alumina, titania, nano-tubular, film, CO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
160 Sol-gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: N. H. Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dipcoating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral domains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: Dip coating, mono-Si, titanium oxide, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
159 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles

Authors: Mirigul Altan, Huseyin Yildirim

Abstract:

Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.

Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841
158 Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation

Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle

Abstract:

The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.

Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
157 Long-term Monitor of Seawater by using TiO2:Ru Sensing Electrode for Hard Clam Cultivation

Authors: Jung-Chuan Chou, Cheng-Wei Chen

Abstract:

The hard clam (meretrix lusoria) cultivated industry has been developed vigorously for recent years in Taiwan, and seawater quality determines the cultivated environment. The pH concentration variation affects survival rate of meretrix lusoria immediately. In order to monitor seawater quality, solid-state sensing electrode of ruthenium-doped titanium dioxide (TiO2:Ru) is developed to measure hydrogen ion concentration in different cultivated solutions. Because the TiO2:Ru sensing electrode has high chemical stability and superior sensing characteristics, thus it is applied as a pH sensor. Response voltages of TiO2:Ru sensing electrode are readout by instrument amplifier in different sample solutions. Mean sensitivity and linearity of TiO2:Ru sensing electrode are 55.20 mV/pH and 0.999 from pH1 to pH13, respectively. We expect that the TiO2:Ru sensing electrode can be applied to real environment measurement, therefore we collect two sample solutions by different meretrix lusoria cultivated ponds in the Yunlin, Taiwan. The two sample solutions are both measured for 200 seconds after calibration of standard pH buffer solutions (pH7, pH8 and pH 9). Mean response voltages of sample 1 and sample 2 are -178.758 mV (Standard deviation=0.427 mV) and -180.206 mV (Standard deviation =0.399 mV), respectively. Response voltages of the two sample solutions are between pH 8 and pH 9 which conform to weak alkali range and suitable meretrix lusoria growth. For long-term monitoring, drift of cultivated solutions (sample 1 and sample 2) are 1.16 mV/hour and 1.03 mV/hour, respectively.

Keywords: Co-sputtering system, Hard clam (meretrix lusoria), Ruthenium-doped titanium dioxide, Solid-state sensing electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597