Search results for: Bearing strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1564

Search results for: Bearing strength

1414 Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing

Authors: B. Chetti

Abstract:

Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: Four-lobe bearings, dynamic characteristics, stabilityanalysis, micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
1413 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco T. C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent loadcarrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steadystate and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: Elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3178
1412 The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin

Authors: Min Ho Kwon, Woo Young Jung, Hyun Su Seo

Abstract:

A polymer cement mortar (PCM) has been widely used  as the material of repair and restoration work for concrete structure;  however a PCM usually induces an environmental pollutant.  Therefore, there is a need to develop PCM which is less impact to  environments. Usually, UM resin is known to be harmless to the  environment. Accordingly, in this paper, the properties of the PCM  using UM resin were studied. The general cement mortar and UM  resin were mixed in the specified ratio. A certain percentage of PVA  fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were  added to enhance the flexural strength. The flexural tests were  performed in order to investigate the flexural strength of each PCM.  Experimental results showed that the strength of proposed PCM using  UM resin is improved when they are compared with general cement  mortar.

 

Keywords: Polymer cement mortar (PCM), UM resin, Compressive strength, PVA fiber, Steel fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
1411 Influence of Strength Abilities on Quality of the Handstand

Authors: P. Hedbávný, G. Bago, M. Kalichová

Abstract:

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

Keywords: Strength abilities, handstand, balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
1410 Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

Authors: Haider M. Alsaeq

Abstract:

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Keywords: Deep Beams, Finite Element, Opening, Reinforced Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4224
1409 Experimental Evaluation of Drilling Damage on the Strength of Cores Extracted from RC Buildings

Authors: A. Masi, A. Digrisolo, G. Santarsiero

Abstract:

Concrete strength evaluated from compression tests on cores is affected by several factors causing differences from the in-situ strength at the location from which the core specimen was extracted. Among the factors, there is the damage possibly occurring during the drilling phase that generally leads to underestimate the actual in-situ strength. In order to quantify this effect, in this study two wide datasets have been examined, including: (i) about 500 core specimens extracted from Reinforced Concrete existing structures, and (ii) about 600 cube specimens taken during the construction of new structures in the framework of routine acceptance control. The two experimental datasets have been compared in terms of compression strength and specific weight values, accounting for the main factors affecting a concrete property, that is type and amount of cement, aggregates' grading, type and maximum size of aggregates, water/cement ratio, placing and curing modality, concrete age. The results show that the magnitude of the strength reduction due to drilling damage is strongly affected by the actual properties of concrete, being inversely proportional to its strength. Therefore, the application of a single value of the correction coefficient, as generally suggested in the technical literature and in structural codes, appears inappropriate. A set of values of the drilling damage coefficient is suggested as a function of the strength obtained from compressive tests on cores.

Keywords: RC Buildings, Assessment, In-situ concrete strength, Core testing, Drilling damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1408 Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar.

Keywords: Compressive strength, flexural strength, compressive modulus elasticity, time to failure, deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3405
1407 Asymptotic Stabilization of an Active Magnetic Bearing System using LMI-based Sliding Mode Control

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, stabilization of an Active Magnetic Bearing (AMB) system with varying rotor speed using Sliding Mode Control (SMC) technique is considered. The gyroscopic effect inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Also, transformation of the AMB dynamic model into a new class of uncertain system shows that this gyroscopic effect lies in the mismatched part of the system matrix. Moreover, the current gain parameter is allowed to be varied in a known bound as an uncertainty in the input matrix. SMC design method is proposed in which the sufficient condition that guarantees the global exponential stability of the reduced-order system is represented in Linear Matrix Inequality (LMI). Then, a new chattering-free control law is established such that the system states are driven to reach the switching surface and stay on it thereafter. The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active Magnetic Bearing (AMB), Sliding ModeControl (SMC), Linear Matrix Inequality (LMI), mismatcheduncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1406 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects

Authors: I. Barsoum, F. Khan

Abstract:

the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.

Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4918
1405 Investigating the Geopolymerization Process of Aluminosilicates and Its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Z. Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which correspond to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: alcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325
1404 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: Concrete, air-entraining, compressive strength, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
1403 The Vertex and Edge Irregular Total Labeling of an Amalgamation of Two Isomorphic Cycles

Authors: Nurdin

Abstract:

Suppose G(V,E) is a graph, a function f : V \cup E \to \{1, 2, 3, \cdots, k\} is called the total edge(vertex) irregular k-labelling for G such that for each two edges are different having distinct weights. The total edge(vertex) irregularity strength of G, denoted by tes(G)(tvs(G), is the smallest k positive integers such that G has a total edge(vertex) irregular k-labelling. In this paper, we determined the total edge(vertex) irregularity strength of an amalgamation of two isomorphic cycles. The total edge irregularity strength and the total vertex irregularity strength of two isomorphic cycles on n vertices are \lceil (2n+2)/3 \rceil and \lceil 2n/3 \rceil for n \geq 3, respectively.

Keywords: Amalgamation of graphs, irregular labelling, irregularity strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1402 Nylon Solution as Soil Stabilizer

Authors: G. M. Ayininuola, O. S. Oladeji

Abstract:

The research investigated the use of nylon solution to enhance the California bearing ratio (CBR) of soil. Used nylon sachet of potable water were dissolved in four separate solvents namely acetone, toluene, ethyl glycol and dual purpose kerosene (DPK). It was discovered that DPK has the highest nylon solubility of 29g/ml at 91oC. The nylon solution was used to stabilize poorly graded sandy soil. The result showed that at less or equal to 4% stabilization, the CBR value decreased from 25.3% to 15.85% and later appreciated to 67.78% at 16% stabilization. The initial decrease in CBR value of soil sample observed was as a result of inadequate nylon solution to coat soil particles for proper bonding.

Keywords: Nylon solution, Soil stabilization, Dual purpose kerosene, California bearing ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3574
1401 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: Compressive strength, GGBS, normal concrete, self-consolidating concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
1400 Developing Marketing Strategy in Nonmetallic Mineral Industry at the Business Level

Authors: Nader Gharibnavaz, Naser Gharibnavaz

Abstract:

This study extends research on the relationship between marketing strategy and market segmentation by investigating on market segments in the cement industry. Competitive strength and rivals distance from the factory were used as business environment. A three segment (positive, neutral or indifferent and zero zones) were identified as strategic segments. For each segment a marketing strategy (aggressive, defensive and decline) were developed. This study employed data from cement industry to fulfill two objectives, the first is to give a framework to the segmentation of cement industry and the second is developing marketing strategy with varying competitive strength. Fifty six questionnaires containing close-and open-ended questions were collected and analyzed. Results supported the theory that segments tend to be more aggressive than defensive when competitive strength increases. It is concluded that high strength segments follow total market coverage, concentric diversification and frontal attack to their competitors. With decreased competitive strength, Business tends to follow multi-market strategy, product modification/improvement and flank attack to direct competitors for this kind of segments. Segments with weak competitive strength followed focus strategy and decline strategy.

Keywords: Marketing strategy, Competitive strength, Market Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
1399 Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant

Authors: S. B. V. S. P. Sastry, V. V. S. Kesava Rao

Abstract:

In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines.

Keywords: Bar mill, design of experiment, Taguchi, yield strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
1398 Young’s Modulus Variability: Influence on Masonry Vault Behavior

Authors: A. Zanaz, S. Yotte, F. Fouchal, A. Chateauneuf

Abstract:

This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode corresponds to the four-hinge mechanism. Based on this consideration, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation. A relationship linking the vault bearing capacity to the voussoirs modulus variation is proposed. The most probable failure mechanisms, in addition to that observed in the deterministic case, are identified for each variability level as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of variability, while the number of other mechanisms and their probability of occurrence increases with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young’s modulus of the segments is proven, taking it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.

Keywords: Masonry, mechanism, probability, variability, vault.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1397 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete

Authors: Mostafa Osman, Ata El-kareim Shoeib

Abstract:

The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (4040 160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fibers with different percentage equal to 0.0, 0.11%, 0.22%, and 0.33% by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0%, 2.0%, and 3.0% by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0%, 0.11%, and 0.22% by weight of cement, and effect of nS fibers with different percentages were equal to 0.0%, 1.0%, and 2.0% by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fibers is more effective when used with cement mortar more than used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fibers. And also by adding nano-fibers the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.

Keywords: Carbon nano-tubes fibers, nano-silica (nS) fibers, compressive strength, flexural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
1396 Friction Calculation and Simulation of Column Electric Power Steering System

Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo

Abstract:

This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.

Keywords: Friction, worm gear, column electric power steering system, Simulink, bearing, electric power steering, EPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
1395 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: Recycled concrete aggregate, re-use, workability, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1394 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609
1393 Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment

Authors: Omar M. Ben-Sasi

Abstract:

A total of fourteen slab-edge beam-column connection specimens were tested gradually to failure under the effect of simultaneous action of shear force and moment. The objective was to investigate the influence of some parameters thought to be important on the behavior and strength of slab-column connections with edge beams encountered in flat slab flooring and roofing systems. The parameters included the existence and strength of edge beam, depth and width of edge beam, steel reinforcement ratio of slab, ratio of moment to shear force, and the existence of openings in the region next to the column.

Results obtained demonstrated the importance of the studied parameters on the strength and behavior of slab-column connections with edge beams.

Keywords: Strength, flat slab, slab-column connections, shear force, moment, behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4440
1392 Effect of Vibration Intervention on Leg-press Exercise

Authors: Youngkuen Cho, Seonhong Hwang, Jinyoung Min, Youngho Kim, Dohyung Lim, Hansung Kim

Abstract:

Many studies have emphasized the importance of resistive exercise to maintain a healthy human body, particular in prevention of weakening of physical strength. Recently, some studies advocated that an application of vibration as a supplementary means in a regular training was effective in encouraging physical strength. Aim of the current study was, therefore, to identify if an application of vibration in a resistive exercise was effective in encouraging physical strength as that in a regular training. A 3-dimensional virtual lower extremity model for a healthy male and virtual leg-press model were generated and synchronized. Dynamic leg-press exercises on a slide machine with/without extra load and on a footboard with vibration as well as on a slide machine with extra load were analyzed. The results of the current indicated that the application of the vibration on the dynamic leg-press exercise might be not greatly effective in encouraging physical strength, compared with the dynamic leg press exercise with extra load. It was, however, thought that the application of the vibration might be helpful to elderly individuals because the reduced maximum muscle strength appeared by the effect of the vibration may avoid a muscular spasm, which can be driven from a high muscle strength sometimes produced during the leg-press exercise with extra load.

Keywords: Resistive exercise, leg-press exercise, muscle strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
1391 Behaviour of Masonry Wall Constructed using Interlocking Soil Cement Bricks

Authors: Ahmad Z., Othman S. Z., Md Yunus B., Mohamed A.

Abstract:

According to the masonry standard the compressive strength is basically dependent on factors such as the mortar strength and the relative values of unit and mortar strength. However interlocking brick has none or less use of mortar. Therefore there is a need to investigate the behavior of masonry walls using interlocking bricks. In this study a series of tests have been conducted; physical properties and compressive strength of brick units and masonry walls were constructed from interlocking bricks and tested under constant vertical load at different eccentricities. The purpose of the experimental investigations is to obtain the force displacement curves, analyze the behavior of masonry walls. The results showed that the brick is categorized as common brick (BS 3921:1985) and severe weathering grade (ASTM C62). The maximum compressive stress of interlocking brick wall is 3.6 N/mm2 and fulfilled the requirement of standard for residential building.

Keywords: Interlocking brick, soil-cement brick, masonry wall, compressive strength, eccentricities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6145
1390 Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete

Authors: Fareed Ahmed Memon, Muhd Fadhil Nuruddin, Samuel Demie, Nasir Shafiq

Abstract:

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C.

Keywords: Geopolymer Concrete, Self-compacting Geopolymerconcrete, Compressive strength, Curing time, Curing temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5665
1389 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M.Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: Soft foundation soil, bearing capacity, bridge ramps, soil improvement, PCC piles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1388 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy

Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh

Abstract:

Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.

TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.

Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4033
1387 The Role of the Studs Configuration in the Structural Response of Composite Bridges

Authors: M. M. Mohammadi Dehnavi, A. De Angelis, M. R. Pecce

Abstract:

This paper deals with the role of studs in structural response for steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength, on the global response (ductility and strength) of the structures but also to analyse the trend of slip and shear at interface along the beams.

Keywords: Shear Load, slip, steel-concrete composite bridge, stud connectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298
1386 Circular Raft Footings Strengthened by Stone Columns under Static Loads

Authors: R. Ziaie Moayed, B. Mohammadi-Haji

Abstract:

Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground.

Keywords: Circular raft footing, numerical analysis, validation, vertically encased stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1385 The Influence of Internal and External Damping on Turbocharger Stability

Authors: Zdeňka Rendlová

Abstract:

This paper presents the mathematical description of the high-speed rotating system taking into account the influence of internal and external damping. The mathematical model is obtained by using the finite element method. The analyzed system is an automotive turbocharger understood as a rotor-bearing system. The circular cross-section shaft is equipped with one compressor wheel, one turbine wheel and is supported by two floating ring bearings. Based on the model, the dynamical analysis of a turbocharger is performed and stability conditions are evaluated.

Keywords: External damping, internal damping, journal bearing, stability, turbocharger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489