Search results for: Bayesian modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2176

Search results for: Bayesian modeling

2146 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease

Authors: Elizabeth Stojanovski

Abstract:

Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.

Keywords: Random-effects, meta-analysis, Bayesian, variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
2145 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
2144 Faults Forecasting System

Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki

Abstract:

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2143 Use of Bayesian Network in Information Extraction from Unstructured Data Sources

Authors: Quratulain N. Rajput, Sajjad Haider

Abstract:

This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.

Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
2142 Health Risk Assessment in Lead Battery Smelter Factory: A Bayesian Belief Network Method

Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang

Abstract:

This paper proposes the use of Bayesian belief networks (BBN) as a higher level of health risk assessment for a dumping site of lead battery smelter factory. On the basis of the epidemiological studies, the actual hospital attendance records and expert experiences, the BBN is capable of capturing the probabilistic relationships between the hazardous substances and their adverse health effects, and accordingly inferring the morbidity of the adverse health effects. The provision of the morbidity rates of the related diseases is more informative and can alleviate the drawbacks of conventional methods.

Keywords: Bayesian belief networks, lead battery smelter factory, health risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
2141 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: Defective autoparts products, Bayesian framework, Generalized linear mixed model (GLMM), Risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2140 Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev’s inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable’s states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.

Keywords: Bayesian network, Chebyshev, decision variable, dynamic Bayesian network, Z-distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
2139 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification

Authors: Essam Al-Daoud

Abstract:

Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.

Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
2138 An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes

Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis, Leila Jafari

Abstract:

In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed, illustrated by a numerical example.

Keywords: Partially observable system, hidden Markov model, competing risks, multivariate Bayesian control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
2137 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
2136 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: Multi-agent system, safety analysis, safety model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
2135 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
2134 Internal Migration and Poverty Dynamic Analysis Using a Bayesian Approach: The Tunisian Case

Authors: Amal Jmaii, Damien Rousseliere, Besma Belhadj

Abstract:

We explore the relationship between internal migration and poverty in Tunisia. We present a methodology combining potential outcomes approach with multiple imputation to highlight the effect of internal migration on poverty states. We find that probability of being poor decreases when leaving the poorest regions (the west areas) to the richer regions (greater Tunis and the east regions).

Keywords: Internal migration, Bayesian approach, poverty dynamics, Tunisia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
2133 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
2132 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
2131 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
2130 Bayesian Belief Networks for Test Driven Development

Authors: Vijayalakshmy Periaswamy S., Kevin McDaid

Abstract:

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
2129 Spatial Time Series Models for Rice and Cassava Yields Based On Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, Linear mixed model, Multivariate conditional autoregressive model, Spatial time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
2128 Integrating Low and High Level Object Recognition Steps

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
2127 On the Parameter of the Burr Type X under Bayesian Principles

Authors: T. N. Sindhu, M. Aslam

Abstract:

A comprehensive Bayesian analysis has been carried out in the context of informative and non-informative priors for the shape parameter of the Burr type X distribution under different symmetric and asymmetric loss functions. Elicitation of hyperparameter through prior predictive approach is also discussed. Also we derive the expression for posterior predictive distributions, predictive intervals and the credible Intervals. As an illustration, comparisons of these estimators are made through simulation study.

Keywords: Credible Intervals, Loss Functions, Posterior Predictive Distributions, Predictive Intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2126 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
2125 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: Vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
2124 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
2123 Pragati Node Popularity (PNP) Approach to Identify Congestion Hot Spots in MPLS

Authors: E. Ramaraj, A. Padmapriya

Abstract:

In large Internet backbones, Service Providers typically have to explicitly manage the traffic flows in order to optimize the use of network resources. This process is often referred to as Traffic Engineering (TE). Common objectives of traffic engineering include balance traffic distribution across the network and avoiding congestion hot spots. Raj P H and SVK Raja designed the Bayesian network approach to identify congestion hors pots in MPLS. In this approach for every node in the network the Conditional Probability Distribution (CPD) is specified. Based on the CPD the congestion hot spots are identified. Then the traffic can be distributed so that no link in the network is either over utilized or under utilized. Although the Bayesian network approach has been implemented in operational networks, it has a number of well known scaling issues. This paper proposes a new approach, which we call the Pragati (means Progress) Node Popularity (PNP) approach to identify the congestion hot spots with the network topology alone. In the new Pragati Node Popularity approach, IP routing runs natively over the physical topology rather than depending on the CPD of each node as in Bayesian network. We first illustrate our approach with a simple network, then present a formal analysis of the Pragati Node Popularity approach. Our PNP approach shows that for any given network of Bayesian approach, it exactly identifies the same result with minimum efforts. We further extend the result to a more generic one: for any network topology and even though the network is loopy. A theoretical insight of our result is that the optimal routing is always shortest path routing with respect to some considerations of hot spots in the networks.

Keywords: Conditional Probability Distribution, Congestion hotspots, Operational Networks, Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
2122 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy

Authors: Zviad Ghadua, Biswa Bhattacharya

Abstract:

The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.

Keywords: Flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
2121 Comparison of Bayesian and Regression Schemes to Model Public Health Services

Authors: Sotirios Raptis

Abstract:

Bayesian reasoning (BR) or Linear (Auto) Regression (AR/LR) can predict different sources of data using priors or other data, and can link social service demands in cohorts, while their consideration in isolation (self-prediction) may lead to service misuse ignoring the context. The paper advocates that BR with Binomial (BD), or Normal (ND) models or raw data (.D) as probabilistic updates can be compared to AR/LR to link services in Scotland and reduce cost by sharing healthcare (HC) resources. Clustering, cross-correlation, along with BR, LR, AR can better predict demand. Insurance companies and policymakers can link such services, and examples include those offered to the elderly, and low-income people, smoking-related services linked to mental health services, or epidemiological weight in children. 22 service packs are used that are published by Public Health Services (PHS) Scotland and Scottish Government (SG) from 1981 to 2019, broken into 110 year series (factors), joined using LR, AR, BR. The Primary component analysis found 11 significant factors, while C-Means (CM) clustering gave five major clusters.

Keywords: Bayesian probability, cohorts, data frames, regression, services, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
2120 Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss

Authors: H. Bevrani, N. Najafi

Abstract:

This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.

Keywords: Bayesian inference, Beta-binomial Distribution, LPLcriteria, quadratic loss function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
2119 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

Authors: G. Zazzaro, F.M. Pisano, G. Romano

Abstract:

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.

Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
2118 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals

Authors: Farhad Asadi, Hossein Sadati

Abstract:

In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
2117 Augmenting Use Case View for Modeling

Authors: Pradip Peter Dey, Bhaskar Raj Sinha, Mohammad Amin, Hassan Badkoobehi

Abstract:

Mathematical, graphical and intuitive models are often constructed in the development process of computational systems. The Unified Modeling Language (UML) is one of the most popular modeling languages used by practicing software engineers. This paper critically examines UML models and suggests an augmented use case view with the addition of new constructs for modeling software. It also shows how a use case diagram can be enhanced. The improved modeling constructs are presented with examples for clarifying important design and implementation issues.

Keywords: Software architecture, software design, Unified Modeling Language (UML), user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901