Search results for: Auditory cortex
68 Biologically Inspired Artificial Neural Cortex Architecture and its Formalism
Authors: Alexei M. Mikhailov
Abstract:
The paper attempts to elucidate the columnar structure of the cortex by answering the following questions. (1) Why the cortical neurons with similar interests tend to be vertically arrayed forming what is known as cortical columns? (2) How to describe the cortex as a whole in concise mathematical terms? (3) How to design efficient digital models of the cortex?Keywords: Cortex, pattern recognition, artificial neural cortex, computational biology, brain and neural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180467 A Self Organized Map Method to Classify Auditory-Color Synesthesia from Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Takamasa Komura, Yosuke Kurihara
Abstract:
Absolute pitch is the ability to identify a musical note without a reference tone. Training for absolute pitch often occurs in preschool education. It is necessary to clarify how well the trainee can make use of synesthesia in order to evaluate the effect of the training. To the best of our knowledge, there are no existing methods for objectively confirming whether the subject is using synesthesia. Therefore, in this study, we present a method to distinguish the use of color-auditory synesthesia from the separate use of color and audition during absolute pitch training. This method measures blood volume in the prefrontal cortex using functional Near-infrared spectroscopy (fNIRS) and assumes that the cognitive step has two parts, a non-linear step and a linear step. For the linear step, we assume a second order ordinary differential equation. For the non-linear part, it is extremely difficult, if not impossible, to create an inverse filter of such a complex system as the brain. Therefore, we apply a method based on a self-organizing map (SOM) and are guided by the available data. The presented method was tested using 15 subjects, and the estimation accuracy is reported.
Keywords: Absolute pitch, functional near-infrared spectroscopy, prefrontal cortex, synesthesia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97866 A Neural Model of Object Naming
Authors: Alessio Plebe
Abstract:
One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.
Keywords: Auditory cortex, object recognition, self-organizingmaps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138565 Event Related Potentials in Terms of Visual and Auditory Stimuli
Authors: Seokbeen Lim, KyeongSeok Sim, DaKyeong Shin, Gilwon Yoon
Abstract:
Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli.
Keywords: Auditory stimulus, EEG, event related potential, oddball task, visual stimulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125264 Analysis of Event-related Response in Human Visual Cortex with fMRI
Authors: Ayesha Zaman, Tanvir Atahary, Shahida Rafiq
Abstract:
Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.Keywords: Echo Planner Imaging, Event related Response, General Linear Model, Visual Neuronal Response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145763 Hallucinatory Activity in Schizophrenia: The Relationship with Childhood Memories, Submissive Behavior, Social Comparison, and Depression
Authors: C. Barreto Carvalho, C. da Motta, J. Pinto-Gouveia, E. B. Peixoto
Abstract:
Auditory hallucinations among the most invalidating and distressing experiences reported by patients diagnosed with schizophrenia, leading to feelings of powerlessness and helplessness towards their illness. In more severe cases, these auditory hallucinations can take the form of commanding voices, which are often related to high suicidality rates in these patients. Several authors propose that the meanings attributed to the hallucinatory experience, rather than characteristics like form and content, can be determinant in patients’ reactions to hallucinatory activity, particularly in the case of voice-hearing experiences. In this study, 48 patients diagnosed with paranoid schizophrenia presenting auditory hallucinations were studied. Multiple regression analyses were computed to study the influence of several developmental aspects, such as family and social dynamics, bullying, depression, and sociocognitive variables on the auditory hallucinations, on patients’ attributions and relationships with their voices, and on the resulting invalidation of hallucinatory experience. Overall, results showed how relationships with voices can mirror several aspects of interpersonal relationship with others, and how self-schemas, depression and actual social relationships help shaping the voice-hearing experience. Early experiences of victimization and submission help predict the attributions of omnipotence of the voices, and increased hostility from parents seems to increase the malevolence of the voices, suggesting that socio-cognitive factors can significantly contribute to the etiology and maintenance of auditory hallucinations. The understanding of the characteristics of auditory hallucinations and the relationships patients established with their voices can allow the development of more promising therapeutic interventions that can be more effective in decreasing invalidation caused by this devastating mental illness.Keywords: Auditory hallucinations, beliefs, life events, schizophrenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225562 Correlated Neural Activity in Cortex and Thalamus Following Brain Injury
Authors: Young-Seok Choi
Abstract:
It has been known that a characteristic Burst-Suppression (BS) pattern appears in EEG during the early recovery period following Cardiac Arrest (CA). Here, to explore the relationship between cortical and subcortical neural activities underlying BS, extracellular activity in the parietal cortex and the centromedian nucleus of the thalamus and extradural EEG were recorded in a rodent CA model. During the BS, the cortical firing rate is extraordinarily high, and that bursts in EEG correlate to dense spikes in cortical neurons. Newly observed phenomena are that 1) thalamic activity reemerges earlier than cortical activity following CA, and 2) the correlation coefficient of cortical and thalamic activities rises during BS period. These results would help elucidate the underlying mechanism of brain recovery after CA injury.Keywords: Cortex, thalamus, cardiac arrest, burst-suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192861 Effect of On-Demand Cueing on Freezing of Gait in Parkinson’s Patients
Authors: Rosemarie Velik
Abstract:
Gait disturbance, particularly freezing of gait (FOG), is a phenomenon that is common in Parkinson’s patients and significantly contributes to a loss of function and independence. Walking performance and number of freezing episodes have been known to respond favorably to sensory cues of different modalities. However, a topic that has so far barely been touched is how to resolve freezing episodes via sensory cues once they have appeared. In this study, we analyze the effect of five different sensory cues on the duration of freezing episodes: (1) vibratory alert, (2) auditory alert, (3) vibratory rhythm, (4) auditory rhythm, (5) visual cue in form of parallel lines projected to the floor. The motivation for this study is to investigate the possibility of the design of a gait assistive device for Parkinson’s patients. Test subjects were 7 Parkinson’s patients regularly suffering from FOG. The patients had to repeatedly walk a pre-defined course and cues were triggered always 2 s after freezing onset. The effect was analyzed via experimental measurements and patient interviews. The measurements showed that all 5 sensory cues led to a decrease of the average duration of freezing: baseline (7.9s), vibratory alert (7.1s), auditory alert (6.7s), auditory rhythm (6.4s), vibratory rhythm (6.3s), and visual cue (5.3s). Nevertheless, interestingly, patients subjectively evaluated the audio alert and vibratory signals to have a significantly better effect for reducing their freezing duration than the visual cue.
Keywords: Auditory cueing, freezing of gait, gait assistance, Parkinson’s disease, vibratory cueing, visual cueing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305560 Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study
Authors: Nasir Yusoff, Ahmad Adamu Adamu, Tahamina Begum, Faruque Reza
Abstract:
The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task.
Keywords: Amplitude, Event Related Potential, P300 Component, Latency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146359 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method
Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González
Abstract:
This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.
Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153258 Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities
Authors: M.Victoria Garcia-Camba, M.Isabel Garcia-Planas
Abstract:
The use of brain stem auditory evoked potential (BAEP) is a common way to study the hearing function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and the authors best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to consider both ears; with these latest data, it has been possible to diagnose more precisely some cases than with the previous data had been diagnosed as “normal”despite showing signs of some alteration that motivated the new consultation to the specialist.
Keywords: Ear, neurodevelopment, auditory evoked potentials, intervals of normality, learning disabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50757 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.
Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15156 Memory and Higher Cognition
Authors: A. Páchová
Abstract:
Working memory (WM) can be defined as the system which actively holds information in the mind to do tasks in spite of the distraction. Contrary, short-term memory (STM) is a system that represents the capacity for the active storing of information without distraction. There has been accumulating evidence that these types of memory are related to higher cognition (HC). The aim of this study was to verify the relationship between HC and memory (visual STM and WM, auditory STM and WM). 59 primary school children were tested by intelligence test, mathematical tasks (HC) and memory subtests. We have shown that visual but not auditory memory is a significant predictor of higher cognition. The relevance of these results are discussed.Keywords: higher cognition, long-term memory, short-term memory, working memory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155055 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172754 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.
Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61053 Generation of Electro-Encephalography Readiness Potentials by Intention
Authors: Seokbeen Lim, Gilwon Yoon
Abstract:
The readiness potential in brain waves is a brain activity related with an intention whose potential arises even before its conscious intention. This study was carried out in order to understand the generation and mechanism of the readiness potential more. The experiment with two subjects was conducted in two ways following the Oddball task protocol. Firstly, auditory stimuli were randomly presented to the subjects. The subject was allowed to press the keyboard with the right index finger only when the subject heard the target stimulus but not the standard stimulus. Secondly, unlike the first one, the auditory stimuli were randomly presented, and the subjects pressed the keyboard in the same manner, but at the same time with grasping action of the left hand. The readiness potential showed up for both of these experiments. In the first Oddball experiment, the readiness potential was detected only when the target stimulus was presented. However, in the second Oddball experiment with the left hand action of grasping something, the readiness potential was detected at the presentation of for both standard and target stimuli. However, detected readiness potentials with the target stimuli were larger than those of the standard stimuli. We found an interesting phenomenon that the readiness potential was able to be detected even the standard stimulus. This indicates that motor-related readiness potentials can be generated only by the intention to move. These results present a new perspective in psychology and brain engineering since subconscious brain action may be prior to conscious recognition of the intention.
Keywords: Readiness potential, auditory stimuli, event-related potential, electroencephalography, oddball task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103452 A Revisited View to the Paced Auditory Serial Addition Test (PASAT) in Female and Male Normal Subjects
Authors: Javad Razjouyan, Shahriar Gharibzadeh, Ali Fallah, Mehdi Moghaddasi, Mohsen Seyfi, Amir Kasaeian
Abstract:
Paced Auditory Serial Addition Test (PASAT) has been used as a common research tool for different neurological disorders like Multiple Sclerosis. Recently, technology let researchers to introduce a new versions of the visual test, the paced visual serial addition test (PVSAT). In this paper, the computerized version of these two tests is introduced. Beside the number of true responses are interpreted, the reaction time of subjects are calculated by the software. We hypothesize that paying attention to the reaction time may be valuable. For this purpose, sixty eight female normal subjects and fifty eight male normal subjects are enrolled in the study. We investigate the similarity between the PASAT3 and PVSAT3 in number of true responses and the new criterion (the average reaction time of each subject). The similarity between two tests were rejected (p-value = 0.000) which means that these two test differ. The effect of sex in the tests were not approved since the pvalues of different between PASAT3 and PVSAT3 in both sex is the same (p-value = 0.000) which means that male and female subjects performed the tests at no different level of performance. The new criterion shows a negative correlation with the age which offers aged normal subjects may have the same number of true responses as the young subjects but they have latent responses. This will give prove for the importance of reaction time.Keywords: Paced Auditory Serial Addition Test, Pace Visual Serial Addition Test, reaction time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195951 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex
Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao
Abstract:
Fabric textures are very common in our daily life. However, the representation of fabric textures has never been explored from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. We choose 140 types of fabrics to get the classical fabric textures as materials. Experiment results indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.Keywords: Fabric Texture, Receptive Filed, Simple Cell, Spare Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147450 Mechanism of Alcohol Related Disruption of the Error Monitoring and Processing System
Authors: M. O. Welcome, Y. E. Razvodovsky, E. V. Pereverzeva, V. A. Pereverzev
Abstract:
The error monitoring and processing system, EMPS is the system located in the substantia nigra of the midbrain, basal ganglia and cortex of the forebrain, and plays a leading role in error detection and correction. The main components of EMPS are the dopaminergic system and anterior cingulate cortex. Although, recent studies show that alcohol disrupts the EMPS, the ways in which alcohol affects this system are poorly understood. Based on current literature data, here we suggest a hypothesis of alcohol-related glucose-dependent system of error monitoring and processing, which holds that the disruption of the EMPS is related to the competency of glucose homeostasis regulation, which in turn may determine the dopamine level as a major component of EMPS. Alcohol may indirectly disrupt the EMPS by affecting dopamine level through disorders in blood glucose homeostasis regulation.Keywords: Alcohol related disruption, Error monitoring andprocessing system, Mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135449 Audio User Interface for Visually Impaired Computer Users: in a Two Dimensional Audio Environment
Authors: Ravihansa Rajapakse, Malshika Dias, Kanishka Weerasekara, Anuja Dharmaratne, Prasad Wimalaratne
Abstract:
In this paper we discuss a set of guidelines which could be adapted when designing an audio user interface for the visually impaired. It is based on an audio environment that is focused on audio positioning. Unlike current applications which only interpret Graphical User Interface (GUI) for the visually impaired, this particular audio environment bypasses GUI to provide a direct auditory output. It presents the capability of two dimensional (2D) navigation on audio interfaces. This paper highlights the significance of a 2D audio environment with spatial information in the context of the visually impaired. A thorough usability study has been conducted to prove the applicability of proposed design guidelines for these auditory interfaces. While proving these guidelines, previously unearthed design aspects have been revealed in this study.Keywords: Human Computer Interaction, Audio User Interfaces, 2D Audio Environment, Visually Impaired Users
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230648 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources
Authors: Md R. Bashar, Yan Li, Peng Wen
Abstract:
This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.
Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191947 Evaluating Factors Affecting Audiologists’ Diagnostic Performance in Auditory Brainstem Response Reading: Training and Experience
Authors: M. Zaitoun, S. Cumming, A. Purcell
Abstract:
This study aims to determine if audiologists' experience characteristics in ABR (Auditory Brainstem Response) reading is associated with their performance in interpreting ABR results. Fifteen ABR traces with varying degrees of hearing level were presented twice, making a total of 30. Audiologists were asked to determine the hearing threshold for each of the cases after completing a brief survey regarding their experience and training in ABR administration. Sixty-one audiologists completed all tasks. Correlations between audiologists’ performance measures and experience variables suggested significant associations (p < 0.05) between training period in ABR testing and audiologists’ performance in terms of both sensitivity and accuracy. In addition, the number of years conducting ABR testing correlated with specificity. No other correlations approached significance. While there are relatively few significant correlations between ABR performance and experience, accuracy in ABR reading is associated with audiologists’ length of experience and period of training. To improve audiologists’ performance in reading ABR results, an emphasis on the importance of training should be raised and standardized levels and period for audiologists training in ABR testing should also be set.
Keywords: ABR, audiology, performance, training, experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76046 Amplitude and Phase Analysis of EEG Signal by Complex Demodulation
Authors: Sun K. Yoo, Hee Cheol Kang
Abstract:
Analysis of amplitude and phase characteristics for delta, theta, and alpha bands at localized time instant from EEG signals is important for the characterizing information processing in the brain. In this paper, complex demodulation method was used to analyze EEG (Electroencephalographic) signal, particularly for auditory evoked potential response signal, with sufficient time resolution and designated frequency bandwidth resolution required. The complex demodulation decomposes raw EEG signal into 3 designated delta, theta, and alpha bands with complex EEG signal representation at sampled time instant, which can enable the extraction of amplitude envelope and phase information. Throughout simulated test data, and real EEG signal acquired during auditory attention task, it can extract the phase offset, phase and frequency changing instant and decomposed amplitude envelope for delta, theta, and alpha bands. The complex demodulation technique can be efficiently used in brain signal analysis in case of phase, and amplitude information required.
Keywords: EEG, Complex Demodulation, Amplitude, Phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475645 Implicit Responses for Assessment of Autism Based on Natural Behaviors Obtained Inside Immersive Virtual Environment
Authors: E. Olmos-Raya, A. Cascales Martínez, N. Minto de Sousa, M. Alcañiz Raya
Abstract:
The late detection and subjectivity of the assessment of Autism Spectrum Disorder (ASD) imposed a difficulty for the children’s clinical and familiar environment. The results showed in this paper, are part of a research project about the assessment and training of social skills in children with ASD, whose overall goal is the use of virtual environments together with physiological measures in order to find a new model of objective ASD assessment based on implicit brain processes measures. In particular, this work tries to contribute by studying the differences and changes in the Skin Conductance Response (SCR) and Eye Tracking (ET) between a typical development group (TD group) and an ASD group (ASD group) after several combined stimuli using a low cost Immersive Virtual Environment (IVE). Subjects were exposed to a virtual environment that showed natural scenes that stimulated visual, auditory and olfactory perceptual system. By exposing them to the IVE, subjects showed natural behaviors while measuring SCR and ET. This study compared measures of subjects diagnosed with ASD (N = 18) with a control group of subjects with typical development (N=10) when exposed to three different conditions: only visual (V), visual and auditory (VA) and visual, auditory and olfactory (VAO) stimulation. Correlations between SCR and ET measures were also correlated with the Autism Diagnostic Observation Schedule (ADOS) test. SCR measures showed significant differences among the experimental condition between groups. The ASD group presented higher level of SCR while we did not find significant differences between groups regarding DF. We found high significant correlations among all the experimental conditions in SCR measures and the subscale of ADOS test of imagination and symbolic thinking. Regarding the correlation between ET measures and ADOS test, the results showed significant relationship between VA condition and communication scores.
Keywords: Autism, electrodermal activity, eye tracking, immersive virtual environment, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80944 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects
Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet
Abstract:
New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.Keywords: Auditory feedback, gesture, sonification, sound perception, virtual object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96643 Inverse Sets-based Recognition of Video Clips
Authors: Alexei M. Mikhailov
Abstract:
The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.Keywords: Artificial neural cortex, computational biology, data mining, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211542 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study
Authors: Faris Tarlochan, Siva Mahesh Tangutooru
Abstract:
Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 μm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.Keywords: Lateral geniculate nucleus, visual cortex, finite element, glaucoma, neuroprostheses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202441 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.
Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29140 Legal Arrangement on Media Ownership and the Case of Turkey
Authors: Sevil Yıldız
Abstract:
In this study, we will touch upon the legal arrangements issued in Turkey for prevention of condensation and for ensuring pluralism in the media. We will mention the legal arrangements concerning the regulatory and supervisory authority, namely the Radio and Television Supreme Council, for the visual and auditory media. In this context; the legal arrangements, which have been introduced by the Law No 6112 on the Establishment of Radio and Television Enterprises and Their Media Services in relation to the media ownership, will be reviewed through comparison with the Article 29 of the repealed Law No 3984.
Keywords: Media ownership, legal arrangements, the case for Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161839 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.
Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570