Search results for: Antenna pattern
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1091

Search results for: Antenna pattern

1091 High Gain Circularly Polarized Wire Antenna for DSRC Applications

Authors: Mohammad J. Almalkawi

Abstract:

In this communication, a low-cost circularly polarized wire antenna exhibiting improved gain performance for Dedicated Short Range Communications (DSRC), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is presented. The proposed antenna comprises a Y-shaped quarterwavelength monopole antenna surrounded by two iterations of eight conductive arched walls acting as parasitic elements to enhance the overall antenna gain and to shape the radiation pattern in the H-plane. A hemispherical radome shell is added to protect the antenna structure and its effect on the antenna performance is discussed. The designed antenna demonstrates antenna gain of 8.2 dB with omnidirectional far-field radiation pattern in the H-plane. The gain of the proposed antenna is also compared with the characteristic of the stand-alone Y-shaped monopole to highlight the advantages of the proposed approach.

Keywords: Circularly polarized, dedicated short-range communication, omnidirectional pattern, vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), Y-shaped wire monopole antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
1090 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.

Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1089 Grooved Linear Microstrip Patch Antenna Array

Authors: Ayesha Aslam, F A Bhatti

Abstract:

A simple impedance matching technique for inset feed grooved microstrip patch antenna based on the concept of coplanar waveguide feed line has been developed and investigated for a printed antenna at X-Band frequency of 10GHz. The proposed technique has been used in the design of Linear Grooved Microstrip patch antenna array. The characteristics of the antenna are determined in terms of Return loss, VSWR, gain, radiation pattern etc. The measured and simulated results presented are found to be in good agreement.

Keywords: Gain, Microstrip patch, return loss, VSWR, Radiation pattern, CPW Feed, Inset feed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
1088 Circular Patch Microstrip Array Antenna for KU-band

Authors: T.F.Lai, Wan Nor Liza Mahadi, Norhayati Soin

Abstract:

This paper present a circular patch microstrip array antenna operate in KU-band (10.9GHz – 17.25GHz). The proposed circular patch array antenna will be in light weight, flexible, slim and compact unit compare with current antenna used in KU-band. The paper also presents the detail steps of designing the circular patch microstrip array antenna. An Advance Design System (ADS) software is used to compute the gain, power, radiation pattern, and S11 of the antenna. The proposed Circular patch microstrip array antenna basically is a phased array consisting of 'n' elements (circular patch antennas) arranged in a rectangular grid. The size of each element is determined by the operating frequency. The incident wave from satellite arrives at the plane of the antenna with equal phase across the surface of the array. Each 'n' element receives a small amount of power in phase with the others. There are feed network connects each element to the microstrip lines with an equal length, thus the signals reaching the circular patches are all combined in phase and the voltages add up. The significant difference of the circular patch array antenna is not come in the phase across the surface but in the magnitude distribution.

Keywords: Circular patch microstrip array antenna, gain, radiation pattern, S-Parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
1087 Dual Band Microstrip Patch Antenna for IEEE802.11b Application

Authors: Biplab Bag

Abstract:

In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for IEEE802.11b application is presented. The proposed antenna is designed by using substrate FR4_epoxy having permittivity of about 4.4 and tangent loss of 0.013. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna dual resonant frequency has been achieved in the band of 1.57GHz-1.68GHz (with BW 30 MHz) and 2.25 GHz -2.55GHz (with BW 40MHz). The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.

Keywords: Microstrip, Radiation Pattern, Return Loss, Tangent Loss, VSWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046
1086 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed

Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.

Keywords: Antenna, CPW, Fractal, GSM, Multiband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
1085 Square Printed Monopole Antenna for Wireless Applications

Authors: Rekha P. Labade, Shankar B. Deosarkar, Narayan Pisharoty

Abstract:

In this article design and optimization of square printed monopole antenna for wireless application is proposed. Theory of characteristics mode (TCM) is used for analysis of current modes on the antenna. TCM analysis shows that beveled ground plane improves the impedance bandwidth. The antenna operates over the frequency range from 1.860 GHz to 5 GHz for a VSWR ≤ 2, covering the GSM (1900-1990MHz), IMT-2000(1920-2170MHz), Bluetooth (2.400-2484 MHz) and lower band of ultrawideband (UWB). Stable radiation pattern shows minimal pulse distortion. The radiation pattern is omni-directional along the H-plane and figure of eight along the E-plane. Size of proposed antenna is 39 mm x 29 mm x 1.6mm. Antenna is simulated using CAD FEKO suite (6.2) using method of moment. A prototype antenna is fabricated using FR4 dielectric substrate with a dielectric constant of 4.4 and loss tangent of 0.02 to validate the simulated and measured results of the proposed antenna. Measured results are in good agreement with simulated results.

Keywords: Destructive Ground Surface (DGS), Method of moment, Theory of characteristics mode, UWB, VSWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371
1084 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications

Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.

Keywords: Cellular communications, MIMO systems, mobile-phone antenna, polarization diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
1083 Design of a Dual Polarized Resonator Antenna for Mobile Communication System

Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan

Abstract:

This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.

Keywords: Metamaterial, electromagnetic band gap, dual polarization, resonator antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
1082 Ribbon Beam Antenna for RFID Technology

Authors: T. Zalabsky, P. Bezousek, T. Shejbal

Abstract:

The paper describes new concept of the ribbon beam antenna for RFID technology. Antenna is located near to railway lines to monitor tags situated on trains. Antenna works at 2.45 GHz and it is fabricated by microstrip technology. Antenna contains two same mirrored parts having the same radiation patterns. Each part consists of three dielectric layers. The first layer has on one side radiation elements. The second layer is only for mechanical construction and it sets optimal electromagnetic field for each radiating elements. The third layer has on its top side a ground plane and on the bottom side a microstrip circuit used for individual radiation elements feeding.

Keywords: RFID, cosecant radiation pattern, ribbon beam, patch antenna, microstrip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1081 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna

Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach

Abstract:

This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.

Keywords: Dual-band antenna, Fractal antenna, GPS band, Modified ground structure, Sierpinski triangle, WiMAX band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4007
1080 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting

Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach

Abstract:

A compact UWB planar antenna fed with a microstrip-line is proposed. The new design consist of a rectangular patch with symmetric l-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875 – 7.115 GHz) with stable radiation pattern is achieved. The proposed antenna has excellent characteristics, low profile and costeffective compared to existing UWB antennas. The UWB antenna is designed and analyzed using CST Microwave Studio in transient mode to verify antenna parameters improvements.

Keywords: UWB Planar Antenna, L-shaped Slots, Wireless Applications, impedance band-width, radiation pattern, CST Microwave Studio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
1079 Compact Slotted Broadband Antenna for Wireless Applications

Authors: M. M. Sharma, Swati Gupta, Deepak Bhatnagar, R. P. Yadav

Abstract:

This paper presents the theoretical investigation of a slotted patch antenna. The main objective of proposed work is to obtain a large bandwidth antenna with reduced size. The antenna has a compact size of 21.1mm x 20.25mm x 8.5mm. Two designs with minor variation are studied which provide wide impedance bandwidths of 24.056% and 25.63% respectively with the use of parasitic elements when excited by a probe feed. The advantages of this configuration are its compact size and the wide range of frequencies covered. A parametric study is also conducted to investigate the characteristics of the antenna under different conditions. The measured return loss and radiation pattern indicate the suitability of this design for WLAN applications, namely, Wi- Max, 802.11a/b/g and ISM bands.

Keywords: Inset feed, microstrip antenna, parasitic patch, shorting wall, slot, wi-max.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
1078 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
1077 Compact Planar Antenna for UWB Applications

Authors: Rezaul Azim, Mohammad Tariqul Islam, Norbahiah Misran

Abstract:

In this paper, a planar antenna for UWB applications has been proposed. The antenna consists of a square patch, a partial ground plane and a slot on the ground plane. The proposed antenna is easy to be integrated with microwave circuitry for low manufacturing cost. The flat type antenna has a compact structure and the total size is 14.5×14.5mm2. The result shows that the impedance bandwidth (VSWR≤ 2) of the proposed antenna is 12.49 GHz (2.95 to 15.44 GHz), which is equivalent to 135.8%. Details of the proposed compact planar UWB antenna design is presented and discussed.

Keywords: Planar antenna, partial ground plane, ultrawideband(UWB) antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
1076 Design and Simulation of a Concentrated Luneberg Antenna

Authors: Z. Briqech, M. Abousetta

Abstract:

Luneberg lens is a new generation of antennas that is developed in the last few years and inserts itself strongly in Microwaves, Communications and Telescopes area. The idea of this research is to improve the radiation pattern by decreasing the side lobes and increasing the main lobe. The new design is proposed to work in the X-band. The simulated result and analysis are presented.

Keywords: Communications, Microwaves, lens Antenna, Lunberg Lens Antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
1075 Microstrip Slot Antenna for Triple Band Application in Wireless Communication

Authors: Biplab Bag

Abstract:

In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for three different wireless communication band applications is presented. The proposed antenna is designed by using substrate Roger RT/duroid 5880 having permittivity of about 2.2 and tangent loss of 0.0009. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna has small in size and operates at 2.25GHz, 3.76GHz and 5.23GHz suitable for mobile satellite service (MSS) network, WiMAX and WLAN applications. The dimension of the patch and slots are optimized to obtain these desired functional frequency ranges. The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.

Keywords: Microstrip, Tangent Loss, MSS, WiMAX, WLAN, Radiation Pattern, Return Loss, VSWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
1074 Comparative Optical Analysis of Offset Reflector Antenna in GRASP

Authors: Ghulam Ahmad

Abstract:

In this paper comparison of Reflector Antenna analyzing techniques based on wave and ray nature of optics is presented for an offset reflector antenna using GRASP (General Reflector antenna Analysis Software Package) software. The results obtained using PO (Physical Optics), PTD (Physical theory of Diffraction), and GTD (Geometrical Theory of Diffraction) are compared. The validity of PO and GTD techniques in regions around the antenna, caustic behavior of GTD in main beam, and deviation of GTD in case of near-in sidelobes of radiation pattern are discussed. The comparison for far-out sidelobes predicted by PO, PO + PTD and GTD is described. The effect of Direct Radiations from feed which results in feed selection for the system is addressed.

Keywords: Geometrical optics & geometrical theory of diffraction, offset reflector antenna, physical optics & physical theory of diffraction, PO & GO comaprison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1073 Design of Reconfigurable Parasitic Antenna for Single RF Chain MIMO Systems

Authors: C. Arunachalaperumal, B. Chandru, J. M. Mathana

Abstract:

In recent years parasitic antenna play major role in MIMO systems because of their gain and spectral efficiency. In this paper, single RF chain MIMO transmitter is designed using reconfigurable parasitic antenna. The Spatial Modulation (SM) is a recently proposed scheme in MIMO scenario which activates only one antenna at a time. The SM entirely avoids ICI and IAS, and only requires a single RF chain at the transmitter. This would switch ON a single transmit-antenna for data transmission while all the other antennas are kept silent. The purpose of the parasitic elements is to change the radiation pattern of the radio waves which is emitted from the driven element and directing them in one direction and hence introduces transmit diversity. Diode is connect between the patch and ground by changing its state (ON and OFF) the parasitic element act as reflector and director and also capable of steering azimuth and elevation angle. This can be achieved by changing the input impedance of each parasitic element through single RF chain. The switching of diode would select the single parasitic antenna for spatial modulation. This antenna is expected to achieve maximum gain with desired efficiency.

Keywords: MIMO system, single RF chain, Parasitic Antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
1072 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

Authors: F. Majeed, D. V. Thiel, M. Shahpari

Abstract:

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Keywords: Meander line antenna, RFID, Silver ink printing, Impedance matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1071 Multiband CPW-Fed Slot Antenna with L-slot Bowtie Tuning Stub

Authors: Prapoch Jirasakulporn

Abstract:

This paper presents a multiband CPW-fed slot antenna with L-slot bowtie tuning stub. The proposed antenna has been designed for PCS 1900, UMTS, WLAN 802.11 a/b/g and bluetooth applications, with a cost-effective FR4 substrate. The proposed antenna still radiate as omni-directional in azimuth plane and sufficient bandwidth for all above mentions. The proposed antenna works as dual-wideband, bandwidth at low frequency band and high frequency are about 45.49 % and 22.39 % respectively. The experimental results of the constructed prototype are presented and also compared with simulation results using a commercial software tool.

Keywords: multiband antenna, slot antenna, CPW-fed, L-slotbowtie stub

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1070 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
1069 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications

Authors: C. Elavarasi, T. Shanmuganantham

Abstract:

A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.

Keywords: Monopole antenna, fractal, metamaterial, waterlily shape, split ring resonator, multiband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
1068 Directivity and Gain Improvement for Microstrip Array Antenna with Directors

Authors: Hassan M. Elkamchouchi, Samy H. Darwish, Yasser H. Elkamchouchi, M. E. Morsy

Abstract:

Methodology is suggested to design a linear rectangular microstrip array antenna based on Yagi antenna theory. The antenna with different directors' lengths as parasitic elements were designed, simulated, and analyzed using HFSS. The calculus and results illustrate the effectiveness of using specific parasitic elements to improve the directivity and gain for microstrip array antenna. The results have shown that the suggested methodology has the potential to be applied for improving the antenna performance. Maximum radiation intensity (Umax) of the order of 0.47w/st was recorded, directivity of 6.58dB, and gain better than 6.07dB are readily achievable for the antenna that working.

Keywords: Directivity, director, gain improvement, microstrip antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1067 Bandwidth Enhancement in CPW Fed Compact Rectangular Patch Antenna

Authors: Kirti Vyas, P. K. Singhal

Abstract:

This paper presents a novel CPW fed patch antenna supporting a wide band from 2.7 GHz – 6.5 GHz. The antenna is compact with size 32 x 30 x 1.6mm3, built over FR4-epoxy substrate (εr=4.4). Bandwidth enhancement has been achieved by using the concept of modified ground structure (MGS). For this purpose structural design has been optimized by parametric simulations in CST MWS. The proposed antenna can perform well in variety of wireless communication services including 5.15 GHz- 5.35 GHz and 5.725 GHz- 5.825 GHz WLAN IEEE 802.11 g/a, 5.2/ 5.5/ 5.8 GHz Wi-Fi, 3.5/5.5 GHz WiMax applications  and 3.7 - 4.2 GHz C band satellite communications bands. The measured experimental results show that bandwidth (S11 < -10 dB) of antenna is 3.8 GHz. The performance of antenna is studied in terms of reflection coefficient, radiation characteristics, current distribution and gain.

Keywords: Broad band antenna, Compact, CPW fed, WLAN, Wi-Fi, Wi-Max, CST MWS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
1066 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok

Abstract:

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: Multi-Slotted Antenna, Microstrip Patch Antenna, Frequency Selective Surface, Artificial Magnetic Conduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3588
1065 Multi Antenna Systems for 5G Mobile Phones

Authors: Muhammad N. Khan, Syed O. Gillani, Mohsin Jamil, Tarbia Iftikhar

Abstract:

With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS).

Keywords: High frequency structures simulator (HFSS), mutli-input multi-output (MIMO), monopole antenna, slot antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1064 A Low Profile Dual Polarized Slot Coupled Patch Antenna

Authors: Mingde Du, Dong Han

Abstract:

A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss > 15 dB and pair ports isolation >23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80±3o in the horizontal plane and 39±2o in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved.

Keywords: Dual polarized, patch antenna, slot coupled, base station antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1063 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application

Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa

Abstract:

This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.

Keywords: Rectangular path arrays, small missile antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
1062 PIN-Diode Based Slotted Reconfigurable Multiband Antenna Array for Vehicular Communication

Authors: Gaurav Upadhyay, Nand Kishore, Prashant Ranjan, Shivesh Tripathi, V. S. Tripathi

Abstract:

In this paper, a patch antenna array design is proposed for vehicular communication. The antenna consists of 2-element patch array. The antenna array is operating at multiple frequency bands. The multiband operation is achieved by use of slots at proper locations at the patch. The array is made reconfigurable by use of two PIN-diodes. The antenna is simulated and measured in four states of diodes i.e. ON-ON, ON-OFF, OFF-ON, and OFF-OFF. In ON-ON state of diodes, the resonant frequencies are 4.62-4.96, 6.50-6.75, 6.90-7.01, 7.34-8.22, 8.89-9.09 GHz. In ON-OFF state of diodes, the measured resonant frequencies are 4.63-4.93, 6.50-6.70 and 7.81-7.91 GHz. In OFF-ON states of diodes the resonant frequencies are 1.24-1.46, 3.40-3.75, 5.07-5.25 and 6.90-7.20 GHz and in the OFF-OFF state of diodes 4.49-4.75 and 5.61-5.98 GHz. The maximum bandwidth of the proposed antenna is 16.29%. The peak gain of the antenna is 3.4 dB at 5.9 GHz, which makes it suitable for vehicular communication.

Keywords: Antenna, array, reconfigurable, vehicular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766