Search results for: new generation networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2959

Search results for: new generation networks

139 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: Political tendency, prediction, sentiment analysis, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
138 Dental Ethics versus Malpractice, as Phenomenon with a Growing Trend

Authors: Saimir Heta, Kers Kapaj, Rialda Xhizdari, Ilma Robo

Abstract:

Dealing with emerging cases of dental malpractice with justifications that stem from the clear rules of dental ethics is a phenomenon with an increasing trend in today's dental practice. Dentists should clearly understand how far the limit of malpractice goes, with or without minimal or major consequences, for the affected patient, which can be justified as a complication of dental treatment, in support of the rules of dental ethics in the dental office. Indeed, malpractice can occur in cases of lack of professionalism, but it can also come as a consequence of anatomical and physiological limitations in the implementation of the dental protocols, predetermined and indicated by the patient in the paragraph of the treatment plan in his personal card. Let this article serve as a short communication between readers and interested parties about the problems that dental malpractice can bring to the community. Malpractice should not be seen only as a professional wrong approach, but also as a phenomenon that can occur during dental practice. The aim of this article is presentation of the latest data published in the literature about malpractice. The combination of keywords is done in such a way with the aim to give the necessary space for collecting the right information in the networks of publications about this field, always first from the point of view of the dentist and not from that of the lawyer or jurist. From the findings included in this article, it was noticed that the diversity of approaches towards the phenomenon depends on the different countries based on the legal basis that these countries have. There is a lack of or a small number of articles that touch on this topic, and these articles are presented with a limited amount of data on the same topic. Dental malpractice should not be hidden under the guise of various dental complications that we justify with the strict rules of ethics for patients treated in the dental chair. The individual experience of dental malpractice must be published with the aim of serving as a source of experience for future generations of dentists.

Keywords: Dental ethics, malpractice, professional protocol, random deviation, dental tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
137 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: Available line transfer capability, congestion management, FACTS device, hybrid fish-bee algorithm, ISO, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
136 The Evaluation of New Generation Cardiovascular Risk Markers in Childhood Obesity

Authors: Mustafa M. Donma, Sule G. Kacmaz, Ahsen Yilmaz, Savas Guzel, Orkide Donma

Abstract:

Obesity, as excessive fat accumulation in the body, is a global health problem. The prevalence of obesity and its complications increase due to easy access to high-energy food and decreased physical activity. Cardiovascular diseases (CVDs) constitute a significant part of obesity-related morbidity and mortality. Since the effects of obesity on cardiovascular system may start during childhood without clinical findings, elucidating the mechanisms of cardiovascular changes associated with childhood obesity became more important. In this study, we aimed to investigate some biochemical parameters which may be involved in obesity-related pathologic processes of CVDs. One hundred and seventy-seven children were included in the study, and they were divided into four groups based upon WHO criteria and presence of the metabolic syndrome (MetS): children with normal-BMI, obesity, morbid obesity, and MetS. High-sensitive cardiac troponin T (hs-cTnT), cardiac myosin binding protein C (cMyBP-C), trimethylamine N-oxide (TMAO), soluble tumor necrosis factor-like weak inducer (sTWEAK), chromogranin A (CgA), multimerin-2 levels, and other biochemical parameters were measured in serum samples. Anthropometric measurements and clinical findings of the children were recorded. Statistical analyses were performed. Children with normal-BMI had significantly higher CgA levels than children with obesity, morbid obesity, and MetS (p < 0.05). Cardiac MyBP-C levels of children with MetS were significantly higher than of children with normal-BMI and OB children (p < 0.05). There was no significant difference in hs-cTnT, sTWEAK, TMAO and multimerin-2 between the groups (p>0.05). These results suggested that cMyBP-C and CgA molecules may be involved in the pathogenesis of obesity-related CVDs.

Keywords: biomarker, cardiovascular diseases, children, obesity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
135 PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks

Authors: A. K. Prajapati

Abstract:

In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.

Keywords: Sensor Network, Graph Theory, MSN, Communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
134 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: Interactive dashboards, optical fibers, structural health monitoring, visual analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
133 Factors Affecting Students’ Performance in Chemistry: Case Study in Zanzibar Secondary Schools

Authors: Ahmed A. Hassan, Hassan I. Ali, Abdallah A. Salum, Asia M. Kassim, Yussuf N. Elmoge, Ali A. Amour

Abstract:

The purpose of this study was to investigate the performance of chemistry in Zanzibar Secondary Schools. It was conducted in all regions of Zanzibar in public and private secondary schools and Ministry of Education officials. The objective of the study included finding out causes of poor performance in chemistry. Views, opinions, and suggestions of teachers and students to improve performance of chemistry and a descriptive survey was adopted for the study. 45 teachers and 200 students were randomly sampled from 15 secondary schools in Zanzibar and ten Ministry of Education officials were purposively sampled for the study. Questionnaires and open-ended interview schedules were the main instruments used in obtaining relevant data from respondents. Data collected from the field was analyzed both qualitatively and quantitatively. Qualitative analysis involved content analysis of the responses obtained through interviews and quantitative analysis involved generation of tables, frequencies and percentages. The results revealed that there were shortages of trained teachers, lack of proficiency in the language of instruction (English) and major facilities like laboratories and books. These led to poor delivery of subject matter and consequently resulting in poor performance. Based on the findings, this study recommends that provision of trained, competent, and effective teachers as vital aspects to be considered. Government through Ministry of Education should put effort to stalk libraries and equip laboratories with modern books and instruments. In addition, the ministry should strengthen teachers’ training and encourage use of instructional media in class and make conducive learning environment to both teachers and students.

Keywords: Zanzibar, secondary schools, chemistry, science, performance and factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7288
132 Why Are Entrepreneurs Resistant to E-tools?

Authors: D. Ščeulovs, E. Gaile-Sarkane

Abstract:

Latvia is the fourth in the world by means of broadband internet speed. The total number of internet users in Latvia exceeds 70% of its population. The number of active mailboxes of the local internet e-mail service Inbox.lv accounts for 68% of the population and 97.6% of the total number of internet users. The Latvian portal Draugiem.lv is a phenomenon of social media, because 58.4 % of the population and 83.5% of internet users use it. A majority of Latvian company profiles are available on social networks, the most popular being Twitter.com. These and other parameters prove the fact consumers and companies are actively using the Internet. 

However, after the authors in a number of studies analyzed how enterprises are employing the e-environment, namely, e-environment tools, they arrived to the conclusions that are not as flattering as the aforementioned statistics. There is an obvious contradiction between the statistical data and the actual studies. As a result, the authors have posed a question: Why are entrepreneurs resistant to e-tools? In order to answer this question, the authors have addressed the Technology Acceptance Model (TAM). The authors analyzed each phase and determined several factors affecting the use of e-environment, reaching the main conclusion that entrepreneurs do not have a sufficient level of e-literacy (digital literacy). 

The authors employ well-established quantitative and qualitative methods of research: grouping, analysis, statistic method, factor analysis in SPSS 20  environment etc. 

The theoretical and methodological background of the research is formed by, scientific researches and publications, that from the mass media and professional literature, statistical information from legal institutions as well as information collected by the author during the survey.

Keywords: E-environment, e-environment tools, technology acceptance model, factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
131 Stabilization of γ-Sterilized Food-Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers

Authors: Sameh A. S. Alariqi

Abstract:

Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organophosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of Gamma-irradiation. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.

Keywords: Ethylene-propylene-diene terpolymer, Synergistic mixtures, Gamma-sterilization and stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5838
130 Integrated Subset Split for Balancing Network Utilization and Quality of Routing

Authors: S. V. Kasmir Raja, P. Herbert Raj

Abstract:

The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.

Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
129 The Influence of Forest Management Histories on Dead Wood and Habitat Trees in the Old Growth Forest in Northern Iran

Authors: Kiomars Sefidi

Abstract:

Dead wood and habitat tree such as fallen logs, snags, stumps and cracks and loos bark etc. are regarded as an important ecological component of forests on which many forest dwelling species depend on presence of them within forest ecosystems. Meanwhile its relation to management history in Caspian forest has gone unreported. The aim of research was to compare the amounts of dead wood and habitat trees in the forests with historically different intensities of management, including: forests with the long term implication of management (PS), the short term implication of management (NS) which were compared with semi virgin forest (GS). The number of 405 individual dead and habitat trees were recorded and measured at 109 sampling locations. ANOVA revealed volume of dead tree in the form and decay classes significantly differ within sites and dead volume in the semi virgin forest significantly higher than managed sites. Comparing the amount of dead and habitat tree in three sites showed that, dead tree volume related with management history and significantly differ in three study sites. Meanwhile, frequency of habitat trees was significantly different within sites. The highest amount of habitat trees including cavities, cracks and loose bark and fork split trees was recorded in virgin site and lowest recorded in the sites with the long term implication of management. It can be concluded that forest management cause reduction of the amount of dead and habitat tree specially in a large size, thus managing this forest according to ecological sustainable principles require a commitment to maintaining stand structure that allow, continued generation of dead trees in a full range of size.

Keywords: Cracks trees, forest biodiversity, fork split trees, nature conservation, sustainable management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
128 Synthesis and Properties of Chitosan-Graft Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification

Authors: H. Ferfera-Harrar, N. Aiouaz, N. Dairi

Abstract:

Superabsorbent polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling superabsorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from wastewater is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels superabsorbents. In this study, novel multi-functional superabsorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’-methylene bisacrylamide as initiator and crosslinker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Thermogravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these superabsorbent composites was examined in various media (distilled water, saline and pH-solutions). The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic.These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from wastewater.

Keywords: Chitosan, gelatin, superabsorbent, water absorbency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
127 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung

Abstract:

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
126 Development of Personal and Social Identity in Immigrant Deaf Adolescents

Authors: Marialuisa Gennari, Giancarlo Tamanza, Ilaria Montanari

Abstract:

Identity development in adolescence is characterized by many risks and challenges, and becomes even more complex by the situation of migration and deafness. In particular, the condition of the second generation of migrant adolescents involves the comparison between the family context in which everybody speaks a language and deals with a specific culture (usually parents’ and relatives’ original culture), the social context (school, peer groups, sports groups), where a foreign language is spoken and a new culture is faced, and finally in the context of the “deaf” world. It is a dialectic involving unsolved differences that have to be treated in a discontinuous process, which will give complex outcomes and chances depending on the process of elaboration of the themes of growth and development, culture and deafness. This paper aims to underline the problems and opportunities for each issue which immigrant deaf adolescents must deal with. In particular, it will highlight the importance of a multifactorial approach for the analysis of personal resources (both intra-psychic and relational); the level of integration of the family of origin in the migration context; the elaboration of the migration event, and finally, the tractability of the condition of deafness. Some psycho-educational support objectives will be also highlighted for the identity development of deaf immigrant adolescents, with particular emphasis on the construction of the adolescents’ useful abilities to decode complex emotions, to develop self-esteem and to get critical thoughts about the inevitable attempts to build their identity. Remarkably, and of importance, the construction of flexible settings which support adolescents in a supple, “decentralized” way in order to avoid the regressive defenses that do not allow for the development of an authentic self.

Keywords: Immigrant deaf adolescents, identity development, personal and social challenges, psycho-educational support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
125 Analyzing Environmental Emotive Triggers in Terrorist Propaganda

Authors: Travis Morris

Abstract:

The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.

Keywords: Emotive triggers, environmental security, natural language processing, propaganda analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
124 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
123 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines

Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto

Abstract:

Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure   accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.

Keywords: Aerial image, land-cover, LiDAR, soil fertility degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
122 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: Distributed control system, identification of risks, information technology, process automation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
121 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
120 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
119 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal

Abstract:

In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: Automotive industry, control plan, FMEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
118 Professional Burn out of Teachers: Reasons and Regularities

Authors: Dabyltayeva R. Y., Smatova K.B., Кabekenov G., Toleshova U., Shagyrbayeva M.

Abstract:

In recent years in Kazakhstan, as well as in all countries, we have been talking not only about the professional stress, but also professional Burnout Syndrome of employees. Burnout is essentially a response to chronic emotional stress – manifests itself in the form of chronic fatigue, despondency, unmotivated aggression, anger, and others. This condition is due to mental fatigue among teachers as a sort of payment for overstrain when professional commitments include the impact of “heat your soul", emotional investment. The emergence of professional Burnout among teachers is due to the system of interrelated and mutually reinforcing factors relating to the various levels of the personality: individually-psychological level is psychodynamic special subject characteristics of valuemotivational sphere and formation of skills and habits of selfregulation; the socio-psychological level includes especially the Organization and interpersonal interaction of a teacher. Signs of the Burnout were observed in 15 testees, and virtually a symptom could be observed in every teacher. As a result of the diagnosis 48% of teachers had the signs of stress (phase syndrome), resulting in a sense of anxiety, mood, heightened emotional susceptibility. The following results have also been got:-the fall of General energy potential – 14 pers. -Psychosomatic and psycho vegetative syndrome – 26 pers. -emotional deficit-34 pers. -emotional Burnout Syndrome-6 pers. The problem of professional Burnout of teachers in the current conditions should become not only meaningful, but particularly relevant. The quality of education of the younger generation depends on professional development; teachers- training level, and how “healthy" teachers are. That is why the systematic maintenance of pedagogic-professional development for teachers (including disclosure of professional Burnout Syndrome factors) takes on a special meaning.

Keywords: Professional burnout syndrome, adaptive syndrome, stage of depletion syndrome, symptoms and characteristics of burnout, prophylactic of professional destruction techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
117 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480
116 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru

Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar

Abstract:

Nowadays, Heritage Building Information Modeling (HBIM) is considered an efficient tool to represent and manage information of Cultural Heritage (CH). The basis of this tool relies on a 3D model generally obtained from a Cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired Level of Development (LOD), Level of Information (LOI), Grade of Generation (GOG) as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models’ families respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources, since the BIM software used has a free student license.

Keywords: Cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
115 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate

Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand

Abstract:

Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.

Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4808
114 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
113 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238
112 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches

Authors: S. Shakibaei, P. Alpkokin

Abstract:

The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.

Keywords: Deregulation, high-speed rail, liberalization, privatization, public-private partnership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
111 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
110 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749