Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32146
The Evaluation of New Generation Cardiovascular Risk Markers in Childhood Obesity

Authors: Mustafa M. Donma, Sule G. Kacmaz, Ahsen Yilmaz, Savas Guzel, Orkide Donma

Abstract:

Obesity, as excessive fat accumulation in the body, is a global health problem. The prevalence of obesity and its complications increase due to easy access to high-energy food and decreased physical activity. Cardiovascular diseases (CVDs) constitute a significant part of obesity-related morbidity and mortality. Since the effects of obesity on cardiovascular system may start during childhood without clinical findings, elucidating the mechanisms of cardiovascular changes associated with childhood obesity became more important. In this study, we aimed to investigate some biochemical parameters which may be involved in obesity-related pathologic processes of CVDs. One hundred and seventy-seven children were included in the study, and they were divided into four groups based upon WHO criteria and presence of the metabolic syndrome (MetS): children with normal-BMI, obesity, morbid obesity, and MetS. High-sensitive cardiac troponin T (hs-cTnT), cardiac myosin binding protein C (cMyBP-C), trimethylamine N-oxide (TMAO), soluble tumor necrosis factor-like weak inducer (sTWEAK), chromogranin A (CgA), multimerin-2 levels, and other biochemical parameters were measured in serum samples. Anthropometric measurements and clinical findings of the children were recorded. Statistical analyses were performed. Children with normal-BMI had significantly higher CgA levels than children with obesity, morbid obesity, and MetS (p < 0.05). Cardiac MyBP-C levels of children with MetS were significantly higher than of children with normal-BMI and OB children (p < 0.05). There was no significant difference in hs-cTnT, sTWEAK, TMAO and multimerin-2 between the groups (p>0.05). These results suggested that cMyBP-C and CgA molecules may be involved in the pathogenesis of obesity-related CVDs.

Keywords: biomarker, cardiovascular diseases, children, obesity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409

References:


[1] H. C. H. Ho,E. Maddaloni, and R. Buzzetti,“Risk factors and predictive biomarkers of early cardiovascular disease in obese youth,”Diabetes Metab. Res. Rev.,vol.35, no.4, pp.e3134, 2019.
[2] D. Segula,“Complications of obesity in adults: a short review of the literature,”Malawi Med. J., vol.26, no.1, pp. 20-24, 2014.
[3] P. Poirier, T. D. Giles, G. A. Bray, Y. Hong, J. S. Stern, F. X. Pi-Sunyer, and R. H. Eckel, American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism,“Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism,”Circulation.,vol.113, no.6, pp. 898-918, Feb. 2006.
[4] I. Csige, D. Ujvárosy, Z. Szabó, I. Lőrincz, G. Paragh, M. Harangi, and S. Somodi,“The impact of obesity on the cardiovascular system,”J. Diabetes Res.,vol.2018, pp.3407306, Nov. 2018.
[5] M. Bastien, P. Poirier, I. Lemieux, and J.P. Després,“Overview of epidemiology and contribution of obesity to cardiovascular disease,”Prog. Cardiovasc. Dis.,vol.56, no.4, pp.369-381, 2014.
[6] H. C. McGill Jr, C. A. McMahan, E. E. Herderick, A. W. Zieske, G. T. Malcom, R. E. Tracy, and J. P. Strong,“Pathobiological determinants of atherosclerosis in youth (PDAY) research group. Obesity accelerates the progression of coronary atherosclerosis in young men,”Circulation,vol.105, no.23, pp. 2712-2718, Jun. 2002.
[7] M. A. Alpert, J. Omran, and B.P. Bostick,“Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function,”Curr. Obes. Rep.,vol.5, no.4, pp.424-434, 2016.
[8] A. Smekal, and J. Vaclavik,“Adipokines and cardiovascular disease: A comprehensive review,”Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., vol.161, no.1, pp. 31-40, 2017.
[9] I. Janssen, P. T. Katzmarzyk, and R. Ross,“Waist circumference and not body mass index explains obesity-related health risk,” Am. J. Clin. Nutr.,vol.79, no.3, pp.379-384, 2004.
[10] N. Katsiki, V. G. Athyros, and D. P. Mikhailidis,“Abnormal peri-organ or intra-organ fat (APIFat) deposition: An underestimated predictor of vascular risk?,”Curr. Vasc. Pharmacol.,vol.14, no.5, pp. 432-441, 2016.
[11] D. Ural,“Kardiyovasküler risk belirlenmesi ve tabakalandırılmasının kılavuzluğuyla yapılan tedavi yaklaşımı: Öngör, önle ve bireyselleştir,”Anadolu Kardiyol. Derg.,vol.11, pp.551-556, 2011.
[12] M. Thiriet,“Cardiovascular risk factors and markers,”in Vasculopathies. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, vol. 8, M. Thiriet, Ed. Cham: Springer, 2018,pp. 91-118.
[13] M. N. Lyngbakken, P. L. Myhre, H. Røsjø, and T. Omland,“Novel biomarkers of cardiovascular disease: Applications in clinical practice,”Crit. Rev. Clin. Lab. Sci.,vol.56, no.1, pp.33-60, 2019.
[14] World Health Organization (WHO). The WHO Child Growth Standards. 2016 June. Access: http://www.who.int/childgrowth/en/
[15] P. Zimmet, K. G. AlbertiG, F. Kaufman, N. Tajima, M. Silink, S. Arslanian, G. Wong, P. Bennet, J. Shaw, S. Caprio, and IDF consensus group,“The metabolic syndrome in children and adolescents-an IDF consensus report,”Pediatr. Diabetes,vol.8, no.5, pp. 299-306, 2007.
[16] E. H. Zobel, T. W. Hansen, P. Rossing, and B. J. von Scholten,“Global changes in food supply and the obesity epidemic,”Curr. Obes. Rep.,vol.5, no.4, pp. 449-455, 2016.
[17] B. Srour, L. K. Fezeu, E. Kesse-Guyot, B. Allès, C. Méjean, R. M. Andrianasolo,E. Chazelas, M. Deschasaux, S. Hercberg, P. Galan, C. A. Monteiro, C. Julia, and M. Touvier,“Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé),”BMJ, vol.365, pp.l1451,May 2019.
[18] B. Swinburn, G. Sacks, and E. Ravussin,“Increased food energy supply is more than sufficient to explain the US epidemic of obesity,”Am. J. Clin. Nutr., vol. 90, no.6, pp.1453-1456, 2009.
[19] U.S. Department of Health and Human Services: Physical Activity Guidelines for Americans, (2nd ed). Washington, DC: U.S. Department of Health and Human Services; 2018.
[20] C. M. Apovian,“Obesity: definition, comorbidities, causes, and burden,”Am. J. Manag. Care,vol.22, no.7 Suppl, pp. s176-185, 2016.
[21] R. Gafoor, H. P. Booth, and M. C. Gulliford,“Antidepressant utilization and incidence of weight gain during 10 years' follow-up: population based cohort study,” BMJ,vol.361, pp. 1951, 2018.
[22] Obezite, Lipid Metabolizması, Hipertansiyon ÇalışmaGrubu: Obezite Tanı ve Tedavi Kılavuzu. Ankara: Türkiye Endokrinoloji ve Metabolizma Derneği, 2019.
[23] J. L. Miner,“The adipocyte as an endocrine cell,”J. Anim. Sci.,vol.82, no. 3, pp. 935-941, 2004.
[24] C. Iacobini, G. Pugliese, C. BlasettiFantauzzi, M. Federici, andS. Menini,“Metabolically healthy versus metabolically unhealthy obesity,” Metabolism, vol.92, pp.51-60, 2019.
[25] S. R. Daniels,“Complications of obesity in children and adolescents,”Int. J. Obes. (Lond.),vol.33, no. Suppl 1, pp.S60-65, 2009.
[26] M. E. Estensen, A. Hognestad, U. Syversen, I. Squire, L. Ng, J. Kjekshus, K. Dickstein, and T. Omland,“Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction,”Am. Heart J.,vol.152, no.5, pp.e1-6,Nov. 2006.
[27] A. M. Janssonn, H. Røsjø, T. Omland, T. Karlsson, M. Hartford, A. Flyvbjerg, and K. Caidahl,“Prognostic value of circulating chromogranin A levels in acute coronary syndromes,”Eur. Heart J.,vol.30, no.1, p.25-32,Jan. 2009.
[28] E. Ferrero, S. Scabini, E. Magni, C. Foglieni, D. Belloni, B. Colombo, F. Curnis, A. Villa, M. E. Ferrero, and A. Corti,“Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage,” FASEB J,vol.18, pp.554–555, 2004.
[29] B. Tota, T. Angelone, and M. C. Cerra,“The surging role of Chromogranin A in cardiovascular homeostasis,”Front. Chem.,vol.2, pp.64, 2014.
[30] A. Corti, andB. Tota,“CgA in heart diseases: more than meets the eye,”Lancet Diabetes Endocrinol., vol.1, no.2, pp. 90, 2013.
[31] L. Crippa, M. Bianco, B. Colombo, A. M. Gasparri, E. Ferrero, Y. P. Loh, F. Curnis, and A. Corti,“A new chromogranin A-dependent angiogenic switch activated by thrombin,”Blood,vol.121, no.2, pp.392–402, 2013.
[32] K. B. Helle, M. H. Metz-Boutigue, M. C. Cerra, and T. Angelone,“Chromogranins: from discovery to current times,”Pflugers Arch.– Eur. J. Physiol.,vol.470, pp.143–154, 2018.
[33] S. K. Mahata, and A. Corti,“Chromogranin A and its fragments in cardiovascular, immunometabolic and cancer regulation,”Annals NYAS,vol.1455, no.1, pp.34-58, 2019.
[34] Y. Cao,“Angiogenesis modulates adipogenesis and obesity,”J. Clin. Invest.,vol.117, no.9, pp.2362-2368, 2007.
[35] P. Collinson,“The role of cardiac biomarkers in cardiovascular disease risk assessment,”Curr. Opin. Cardiol.,vol.29, no.4, pp.366-371, 2014.
[36] P. Pervanidou, A. Akalestos, D. Bastaki, F. Apostolakou, I. Papassotiriou, and G. Chrousos,“Increased circulating High-Sensitivity Troponin T concentrations in children and adolescents with obesity and the metabolic syndrome: a marker for early cardiac damage?,” Metabolism,vol.62, no.4, pp.527-531, 2013.
[37] M. N. Lyngbakken, P. L. Myhre, H. Røsjø, and T. Omland,“Novel biomarkers of cardiovascular disease: Applications in clinical practice,”Crit. Rev. Clin. Lab. Sci.,vol.56, no.1, pp.33-60, 2019.
[38] T. E. Kaier, B. Alaour, and M. Marber,“Cardiac myosin-binding protein C-From bench to improved diagnosis of acute myocardial infarction,”Cardiovasc. Drugs Ther.,vol.33, no.2, pp.221-230, 2019.
[39] S. Govindan, A. McElligott, S. Muthusamy, N. Nair, D. Barefield, J. L. Martin, E. Gongora, K. D. Greis, P. K. Luther, S. Winegrad, K. K. Henderson, and S. Sadayappan,“Cardiac myosin binding protein-C is a potential diagnostic biomarker for myocardial infarction,” J. Mol. Cell. Cardiol.,vol.52, no.1, pp.154-164, Jan. 2012.
[40] D. El Amrousy, H. Hodeib, G. Suliman, N. Hablas, E. R. Salama, and A. Esam,“Diagnostic and prognostic value of plasma levels of cardiac myosin binding protein-C as a novel biomarker in heart failure,”Pediatr. Cardiol., vol.38, no.2, pp.418-424, 2017.
[41] Y. Sato, H. Fujiwara, and Y. Takatsu,“Biochemical markers in heart failure,” J. Cardiol.,vol.59, no.1, pp.1-7, 2012.
[42] C. W. Tong, G. F. Dusio, S. Govindan, D. W. Johnson, D. T. Kidwell, L. M. De La Rosa, P. C. Rosas, Y. Liu, E. Ebert, M. K. Newell-Rogers, J. B. Michel, J. P. Trzeciakowski, and S. Sadayappan,“Usefulness of released cardiac myosin binding protein-C as a predictor of cardiovascular events,”Am. J. Cardiol.,vol.120, no.9, pp.1501-1507,Jul. 2017.
[43] J. O. Baker,R. Tyther, C. Liebetrau, J. Clark, R. Howarth, T. Patterson, H. Möllmann, H. Nef, P. Sicard, B. Kailey, R. Devaraj, S. R. Redwood, G. Kunst, E. Weber, and M. S. Marber,“Cardiac myosin binding protein C: a potential early biomarker of myocardial injury,”Basic Res. Cardiol.,vol.110. no.3, pp.23, May 2015.
[44] X-J.Chen, W. Zhang, Z-P.Bian, Z-M.Wang, J. Zhang, H-F.Wu, Y-F Shao, J-N Zhang, and S. Zhao,“Cardiac myosin-binding protein C release profile after cardiac surgery in intensive care unit,”Ann. Thorac. Surg., vol.108, pp.1195-1201, 2019.
[45] Loyola Medicine. New Blood Test Could Detect Heart Attacks More Quickly. Ultra-early marker could lead to faster treatments. 2014 Feb. Access: http//www.newswise.com/articles/new-blood-test-could-detect-heart-attacks-more-quickly
[46] S. Govindan, D. W. Kuster, B. Lin, D. J. Kahn, W. P. Jeske, J. M. Walenga, F. Leya, D. Hoppensteadt, J. Fareed,and S. Sadayappan,“Increase in cardiac myosin binding protein-C plasma levels is a sensitive and cardiac-specific biomarker of myocardial infarction,”Am. J. Cardiovasc. Dis.,vol.3, no.2, pp.60-70, 2013.
[47] D. W. Kuster, A. Cardenas-Ospina, L. Miller, C. Liebetrau, C. Troidl, H. M. Nef,H. Möllmann, C. W. Hamm, K. S. Pieper, K. W. Mahaffey, N. S. Kleiman, B. D. Stuyvers, A. J. Marian, and S. Sadayappan,“Release kinetics of circulating cardiac myosin binding protein-C following cardiac injury,”Am. J. Physiol. Heart Circ. Physiol., vol. 306, no. 4, pp.H547-556,2014.