@article{(Open Science Index):https://publications.waset.org/pdf/10002042,
	  title     = {Synthesis and Properties of Chitosan-Graft Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification},
	  author    = {H. Ferfera-Harrar and  N. Aiouaz and  N. Dairi},
	  country	= {},
	  institution	= {},
	  abstract     = {Superabsorbent polymers received much attention and
are used in many fields because of their superior characters to
traditional absorbents, e.g., sponge and cotton. So, it is very
important but challenging to prepare highly and fast-swelling
superabsorbents. A reliable, efficient and low-cost technique for
removing heavy metal ions from wastewater is the adsorption using
bio-adsorbents obtained from biological materials, such as
polysaccharides-based hydrogels superabsorbents. In this study, novel multi-functional superabsorbent composites
type semi-interpenetrating polymer networks (Semi-IPNs) were
prepared via graft polymerization of acrylamide onto chitosan
backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium
persulfate and N,N’-methylene bisacrylamide as initiator and
crosslinker, respectively. These hydrogels were also partially
hydrolyzed to achieve superabsorbents with ampholytic properties
and uppermost swelling capacity. The formation of the grafted
network was evidenced by Fourier Transform Infrared Spectroscopy
(ATR-FTIR) and Thermogravimetric Analysis (TGA). The porous
structures were observed by Scanning Electron Microscope (SEM).
From TGA analysis, it was concluded that the incorporation of the Ge
in the CTS-g-PAAm network has marginally affected its thermal
stability. The effect of gelatin content on the swelling capacities of
these superabsorbent composites was examined in various media
(distilled water, saline and pH-solutions). The water absorbency was
enhanced by adding Ge in the network, where the optimum value was
reached at 2 wt. % of Ge. Their hydrolysis has not only greatly
optimized their absorption capacity but also improved the swelling
kinetic.These materials have also showed reswelling ability. We
believe that these super-absorbing materials would be very effective
for the adsorption of harmful metal ions from wastewater.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {9},
	  number    = {7},
	  year      = {2015},
	  pages     = {849 - 856},
	  ee        = {https://publications.waset.org/pdf/10002042},
	  url   	= {https://publications.waset.org/vol/103},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 103, 2015},