Search results for: linear prediction analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10595

Search results for: linear prediction analysis

7895 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
7894 1/Sigma Term Weighting Scheme for Sentiment Analysis

Authors: Hanan Alshaher, Jinsheng Xu

Abstract:

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Keywords: Sentiment analysis, term weighting scheme, 1/sigma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
7893 P-ACO Approach to Assignment Problem in FMSs

Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh

Abstract:

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
7892 A New Approach to Workforce Planning

Authors: M. Othman, N. Bhuiyan, G. J. Gouw

Abstract:

In today-s global and competitive market, manufacturing companies are working hard towards improving their production system performance. Most companies develop production systems that can help in cost reduction. Manufacturing systems consist of different elements including production methods, machines, processes, control and information systems. Human issues are an important part of manufacturing systems, yet most companies do not pay sufficient attention to them. In this paper, a workforce planning (WP) model is presented. A non-linear programming model is developed in order to minimize the hiring, firing, training and overtime costs. The purpose is to determine the number of workers for each worker type, the number of workers trained, and the number of overtime hours. Moreover, a decision support system (DSS) based on the proposed model is introduced using the Excel-Lingo software interfacing feature. This model will help to improve the interaction between the workers, managers and the technical systems in manufacturing.

Keywords: Decision Support System, Human Factors, Manufacturing System, Workforce Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
7891 Error Analysis of English Inflection among Thai University Students

Authors: Suwaree Yordchim, Toby J. Gibbs

Abstract:

The linguistic competence of Thai university students majoring in Business English was examined in the context of knowledge of English language inflection, and also various linguistic elements. Errors analysis was applied to the results of the testing. Levels of errors in inflection, tense and linguistic elements were shown to be significantly high for all noun, verb and adjective inflections. Findings suggest that students do not gain linguistic competence in their use of English language inflection, because of interlanguage interference. Implications for curriculum reform and treatment of errors in the classroom are discussed.

Keywords: Interlanguage, error analysis, inflection, second language acquisition, Thai students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640
7890 A Lean Manufacturing Profile of Practices in the Metallurgical Industry: A Methodology for Multivariate Analysis

Authors: Jonathan D. Morales M., Ramón Silva R.

Abstract:

The purpose of this project is to carry out an analysis and determine the profile of actual lean manufacturing processes in the Metropolitan Area of Bucaramanga. Through the analysis of qualitative and quantitative variables it was possible to establish how these manufacturers develop production practices that ensure their competitiveness and productivity in the market. In this study, a random sample of metallurgic and wrought iron companies was applied, following which a quantitative focus and analysis was used to formulate a qualitative methodology for measuring the level of lean manufacturing procedures in the industry. A qualitative evaluation was also carried out through a multivariate analysis using the Numerical Taxonomy System (NTSYS) program which should allow for the determination of Lean Manufacturing profiles. Through the results it was possible to observe how the companies in the sector are doing with respect to Lean Manufacturing Practices, as well as identify the level of management that these companies practice with respect to this topic. In addition, it was possible to ascertain that there is no one dominant profile in the sector when it comes to Lean Manufacturing. It was established that the companies in the metallurgic and wrought iron industry show low levels of Lean Manufacturing implementation. Each one carries out diverse actions that are insufficient to consolidate a sectoral strategy for developing a competitive advantage which enables them to tie together a production strategy.

Keywords: Lean manufacturing, metallurgic industry, production line management, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
7889 Spatio-Temporal Video Slice Edges Analysis for Shot Transition Detection and Classification

Authors: Aissa Saoudi, Hassane Essafi

Abstract:

In this work we will present a new approach for shot transition auto-detection. Our approach is based on the analysis of Spatio-Temporal Video Slice (STVS) edges extracted from videos. The proposed approach is capable to efficiently detect both abrupt shot transitions 'cuts' and gradual ones such as fade-in, fade-out and dissolve. Compared to other techniques, our method is distinguished by its high level of precision and speed. Those performances are obtained due to minimizing the problem of the boundary shot detection to a simple 2D image partitioning problem.

Keywords: Boundary shot detection, Shot transition detection, Video analysis, Video indexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
7888 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.

Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
7887 Keyword Network Analysis on the Research Trends of Life-Long Education for People with Disabilities in Korea

Authors: Jakyoung Kim, Sungwook Jang

Abstract:

The purpose of this study is to examine the research trends of life-long education for people with disabilities using a keyword network analysis. For this purpose, 151 papers were selected from 594 papers retrieved using keywords such as 'people with disabilities' and 'life-long education' in the Korean Education and Research Information Service. The Keyword network analysis was constructed by extracting and coding the keyword used in the title of the selected papers. The frequency of the extracted keywords, the centrality of degree, and betweenness was analyzed by the keyword network. The results of the keyword network analysis are as follows. First, the main keywords that appeared frequently in the study of life-long education for people with disabilities were 'people with disabilities', 'life-long education', 'developmental disabilities', 'current situations', 'development'. The research trends of life-long education for people with disabilities are focused on the current status of the life-long education and the program development. Second, the keyword network analysis and visualization showed that the keywords with high frequency of occurrences also generally have high degree centrality and betweenness centrality. In terms of the keyword network diagram, it was confirmed that research trends of life-long education for people with disabilities are centered on six prominent keywords. Based on these results, it was discussed that life-long education for people with disabilities in the future needs to expand the subjects and the supporting areas of the life-long education, and the research needs to be further expanded into more detailed and specific areas. 

Keywords: Life-long education, people with disabilities, research trends, keyword network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
7886 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
7885 Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

Fighter aircraft selection is one of the most critical strategies for defense multiple criteria decision-making analysis to increase the decisive power of air defense and its superior power in the defense strategy. Vague set theory is an adequate approach for modeling vagueness, uncertainty, and imprecision in decision-making problems. This study integrates vague set theory and the technique for order of preference by similarity to ideal solution (TOPSIS) to support fighter aircraft selection. The proposed method is applied in the selection of fighter aircraft for the Air Force. In the proposed approach, the ratings of alternatives and the importance weights of criteria for fighter aircraft selection are represented by the vague set theory. Finally, an illustrative example for fighter aircraft selection is given to demonstrate the applicability and effectiveness of the proposed approach. The fighter aircraft candidates were selected under six criteria including costability, payloadability, maneuverability, speedability, stealthility, and survivability. Analysis results show that the best fighter aircraft is selected with the highest closeness coefficient value. The proposed method can also be applied to solve other multiple criteria decision analysis problems. 

Keywords: fighter aircraft selection, vague set theory, fuzzy set theory, neutrosophic set theory, multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
7884 A Phenomic Algorithm for Reconstruction of Gene Networks

Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy

Abstract:

The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.

Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
7883 The Dynamics of Oil Bodies in A. thaliana Seeds: A Mathematical Model of Biogenesis and Coalescence

Authors: G. Trigui, B. Laroche, M. Miquel, B. Dubreucq, A. Trubuil

Abstract:

The subcellular organelles called oil bodies (OBs) are lipid-filled quasi-spherical droplets produced from the endoplasmic reticulum (ER) and then released into the cytoplasm during seed development. It is believed that an OB grows by coalescence with other OBs and that its stability depends on the composition of oleosins, major proteins inserted in the hemi membrane that covers OBs. In this study, we measured the OB-volume distribution from different genotypes of A. thaliana after 7, 8, 9, 10 and 11 days of seed development. In order to test the hypothesis of OBs dynamics, we developed a simple mathematical model using non-linear differential equations inspired from the theory of coagulation. The model describes the evolution of OB-volume distribution during the first steps of seed development by taking into consideration the production of OBs, the increase of triacylglycerol volume to be stored, and the growth by coalescence of OBs. Fitted parameters values show an increase in the OB production and coalescence rates in A. thaliana oleosin mutants compared to wild type.

Keywords: Biogenesis, coalescence, oil body, oleosin, population dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
7882 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident

Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang

Abstract:

In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.

Keywords: PWR, TRACE, SBO, Maanshan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
7881 A New Verified Method for Solving Nonlinear Equations

Authors: Taher Lotfi , Parisa Bakhtiari , Katayoun Mahdiani , Mehdi Salimi

Abstract:

In this paper, verified extension of the Ostrowski method which calculates the enclosure solutions of a given nonlinear equation is introduced. Also, error analysis and convergence will be discussed. Some implemented examples with INTLAB are also included to illustrate the validity and applicability of the scheme.

Keywords: Iinterval analysis, nonlinear equations, Ostrowski method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
7880 Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control

Authors: K. K. Starkov, A. Y. Pogromsky, I. J. B. F. Adan, J. E. Rooda

Abstract:

In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.

Keywords: Flexible manufacturing systems, tracking systems, discrete time systems, production control, boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
7879 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Soil organic carbon, modeling, neural networks, CDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
7878 A Case Study to Assess the Validity of Function Points

Authors: Neelam Bawane nee' Singhal, C. V. Srikrishna

Abstract:

Many metrics were proposed to evaluate the characteristics of the analysis and design model of a given product which in turn help to assess the quality of the product. Function point metric is a measure of the 'functionality' delivery by the software. This paper presents an analysis of a set of programs of a project developed in Cµ through Function Points metric. Function points are measured for a Data Flow Diagram (DFD) of the case developed at initial stage. Lines of Codes (LOCs) and possible errors are calculated with the help of measured Function Points (FPs). The calculations are performed using suitable established functions. Calculated LOCs and errors are compared with actual LOCs and errors found at the time of analysis & design review, implementation and testing. It has been observed that actual found errors are more than calculated errors. On the basis of analysis and observations, authors conclude that function point provides useful insight and helps to analyze the drawbacks in the development process.

Keywords: Function Points, Data Flow Diagram, Lines ofCodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3682
7877 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools

Authors: Yogesh Aggarwal

Abstract:

The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.

Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
7876 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model

Authors: Chaudhuri Manoj Kumar Swain, Susmita Das

Abstract:

This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.

Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
7875 A PSO-based SSSC Controller for Improvement of Transient Stability Performance

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
7874 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
7873 Multiscale Analysis and Change Detection Based on a Contrario Approach

Authors: F.Katlane, M.S.Naceur, M.A.Loghmari

Abstract:

Automatic methods of detecting changes through satellite imaging are the object of growing interest, especially beca²use of numerous applications linked to analysis of the Earth’s surface or the environment (monitoring vegetation, updating maps, risk management, etc...). This work implemented spatial analysis techniques by using images with different spatial and spectral resolutions on different dates. The work was based on the principle of control charts in order to set the upper and lower limits beyond which a change would be noted. Later, the a contrario approach was used. This was done by testing different thresholds for which the difference calculated between two pixels was significant. Finally, labeled images were considered, giving a particularly low difference which meant that the number of “false changes” could be estimated according to a given limit.

Keywords: multi-scale, a contrario approach, significantthresholds, change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
7872 Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev Shahwar F. Ragab

Abstract:

In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.

Keywords: Variational iteration method, free convection, Chaos, Lorenz equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
7871 Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis

Authors: Elias O. Tembe, Hussain A. Al-Salamin

Abstract:

There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices is connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing(ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.

Keywords: AHP analysis, Decagram, Decagon, Holomorphic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
7870 A Codebook-based Redundancy Suppression Mechanism with Lifetime Prediction in Cluster-based WSN

Authors: Huan Chen, Bo-Chao Cheng, Chih-Chuan Cheng, Yi-Geng Chen, Yu Ling Chou

Abstract:

Wireless Sensor Network (WSN) comprises of sensor nodes which are designed to sense the environment, transmit sensed data back to the base station via multi-hop routing to reconstruct physical phenomena. Since physical phenomena exists significant overlaps between temporal redundancy and spatial redundancy, it is necessary to use Redundancy Suppression Algorithms (RSA) for sensor node to lower energy consumption by reducing the transmission of redundancy. A conventional algorithm of RSAs is threshold-based RSA, which sets threshold to suppress redundant data. Although many temporal and spatial RSAs are proposed, temporal-spatial RSA are seldom to be proposed because it is difficult to determine when to utilize temporal or spatial RSAs. In this paper, we proposed a novel temporal-spatial redundancy suppression algorithm, Codebookbase Redundancy Suppression Mechanism (CRSM). CRSM adopts vector quantization to generate a codebook, which is easily used to implement temporal-spatial RSA. CRSM not only achieves power saving and reliability for WSN, but also provides the predictability of network lifetime. Simulation result shows that the network lifetime of CRSM outperforms at least 23% of that of other RSAs.

Keywords: Redundancy Suppression Algorithm (RSA), Threshold-based RSA, Temporal RSA, Spatial RSA and Codebookbase Redundancy Suppression Mechanism (CRSM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
7869 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
7868 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Authors: K.M. Faraoun, A. Boukelif

Abstract:

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Keywords: Genetic programming, patterns classification, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
7867 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. It is difficult to find analytical solution of these non-linear equations. Hence, in this paper verification of the finite element model has been carried out against available numerical predictions and field data. The results of the model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29km at both sites (15km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400km downstream in the Indus River from Sukkur barrage of Sindh, Pakistan, which demonstrates accurate model predictions with observed the daily discharges. Hence, this model may be utilized for flood warnings in advance.

Keywords: Finite Element Method, Flood Forecasting, HEC-RAS, Indus river.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
7866 Diversity Analysis of a Quinoa (Chenopodium quinoa Willd.) Germplasm during Two Seasons

Authors: M. Mhada, E. N. Jellen, S. E. Jacobsen, O. Benlhabib

Abstract:

The present work has been carried out to evaluate the diversity of a collection of 78 quinoa accessions developed through recurrent selection from Andean germplasm introduced to Morocco in the winter of 2000. Twenty-three quantitative and qualitative characters were used for the evaluation of genetic diversity and the relationship between the accessions, and also for the establishment of a core collection in Morocco. Important variation was found among the accessions in terms of plant morphology and growth behavior. Data analysis showed positive correlation of the plant height, the plant fresh and the dry weight with the grain yield, while days to flowering was found to be negatively correlated with grain yield. The first four PCs contributed 74.76% of the variability; the first PC showed significant variation with 42.86% of the total variation, PC2 with 15.37%, PC3 with 9.05% and PC4 contributed 7.49% of the total variation. Plant size, days to grain filling and days to maturity are correlated to the PC1; and seed size, inflorescence density and mildew resistance are correlated to the PC2. Hierarchical cluster analysis rearranged the 78 quinoa accessions into four main groups and ten sub-clusters. Clustering was found in associations with days to maturity and also with plant size and seed-size traits.

Keywords: Character association, Chenopodium quinoa, Diversity analysis, Morphotypic cluster, Multivariate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593