Search results for: solving Sudoku puzzles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 825

Search results for: solving Sudoku puzzles

585 Considering Assembly Operations and Product Structure for Manufacturing Cell Formation

Authors: M.B. Aryanezhad, J. Aliabadi

Abstract:

This paper considers the integration of assembly operations and product structure to Cellular Manufacturing System (CMS) design so that to correct the drawbacks of previous researches in the literature. For this purpose, a new mathematical model is developed which dedicates machining and assembly operations to manufacturing cells while the objective function is to minimize the intercellular movements resulting due to both of them. A linearization method is applied to achieve optimum solution through solving aforementioned nonlinear model by common programming language such as Lingo. Then, using different examples and comparing the results, the importance of integrating assembly considerations is demonstrated.

Keywords: Assembly operations and Product structure, CellFormation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
584 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems

Authors: Shengfeng Li, Rujing Wang

Abstract:

In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.

Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
583 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
582 Some Results on New Preconditioned Generalized Mixed-Type Splitting Iterative Methods

Authors: Guangbin Wang, Fuping Tan, Deyu Sun

Abstract:

In this paper, we present new preconditioned generalized mixed-type splitting (GMTS) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally, we give a numerical example to confirm our theoretical results.

Keywords: Preconditioned, GMTS method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
581 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: Temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
580 Effectiveness of Working Memory Training on Cognitive Flexibility

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

The aim of this study was to investigate the effectiveness of memory training exercise on cognitive flexibility. The method of this study was experimental. The statistical population selected 40 students 14 years old, samples were chosen by available sampling method and then they were replaced in experimental (training program) group and control group randomly and answered to Wisconsin Card Sorting Test; covariance test results indicated that there were a significant in post-test scores of experimental group (p<0.005).

Keywords: Cognitive flexibility, working memory exercises, problem solving, reaction time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
579 Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing

Authors: B. Chetti

Abstract:

Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: Four-lobe bearings, dynamic characteristics, stabilityanalysis, micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
578 The Link between Financial and Overall Corporate Strategies

Authors: Jaroslav Pavlíček

Abstract:

Company strategy expresses a basic idea of how to reach company objectives. A whole range of models of strategic management are used in practice. The concept of strategic management should fulfill some basic requirements to make it applicable for both the typical, but also more specific company environment. The financial strategy plays an important role in corporate strategy. The paper develops a methodology of strategic model implementing into the category of micro, small and medium-sized enterprises (SMEs). Furthermore, the methodology recommends procedures while solving an up-to-date worldwide task of the definition of the company strategy and its financial strategy.

Keywords: corporate strategy, financial strategy, corporate planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
577 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
576 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
575 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application

Authors: Minghui Wang

Abstract:

Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.

Keywords: Matrix equation, bisymmetric matrix, least squares problem, like-minimum norm, iterative algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
574 Forward Kinematics Analysis of a 3-PRS Parallel Manipulator

Authors: Ghasem Abbasnejad, Soheil Zarkandi, Misagh Imani

Abstract:

In this article the homotopy continuation method (HCM) to solve the forward kinematic problem of the 3-PRS parallel manipulator is used. Since there are many difficulties in solving the system of nonlinear equations in kinematics of manipulators, the numerical solutions like Newton-Raphson are inevitably used. When dealing with any numerical solution, there are two troublesome problems. One is that good initial guesses are not easy to detect and another is related to whether the used method will converge to useful solutions. Results of this paper reveal that the homotopy continuation method can alleviate the drawbacks of traditional numerical techniques.

Keywords: Forward kinematics, Homotopy continuationmethod, Parallel manipulators, Rotation matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
573 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices

Authors: Li Jiang, Baoguang Tian

Abstract:

In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.

Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
572 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations

Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat

Abstract:

Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.

Keywords: Nonlinear Algebraic Equations, Iterative Methods, Homotopy Analysis Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
571 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: R. B. Ogunrinde

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: Differential equations, Numerical, Initial value problem, Polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
570 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method

Authors: Nemat Abazari, Reza Abazari

Abstract:

In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.

Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
569 Cross-Industry Innovations–Systematic Identification of Ideas for Radical Problem Solving

Authors: Niklas Echterhoff, Benjamin Amshoff, Jürgen Gausemeier

Abstract:

Creativity is often based on an unorthodox recombination of knowledge; in fact: 80% of all innovations use given knowledge and put it into a new combination. Cross-industry innovations follow this way of thinking and bring together problems and solution ideas from different industries. Therefore analogies and search strategies have to be developed. Taking this path, the questions where to search, what to search and how to search have to be answered. Afterwards, the gathered information can be used within a planned search process. Identified solution ideas have to be assessed and analyzed in detail for the success promising adaption planning.

Keywords: analogy building, cross-industry innovations, knowledge transfer, solution adaption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
568 A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation

Authors: Joan Goh, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.

Keywords: Heat equation, Collocation based, Cubic Bspline, Extended cubic uniform B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
567 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations

Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi

Abstract:

An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .

Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
566 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations

Authors: Shishen Xie

Abstract:

In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations

Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
565 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations

Authors: Mahmoud Zarrini, Sanaz Torkaman

Abstract:

In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.

Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
564 Analysis of Self Excited Induction Generator using Particle Swarm Optimization

Authors: Hassan E. A. Ibrahim, Mohamed F. Serag

Abstract:

In this paper, Novel method, Particle Swarm Optimization (PSO) algorithm, based technique is proposed to estimate and analyze the steady state performance of self-excited induction generator (SEIG). In this novel method the tedious job of deriving the complex coefficients of a polynomial equation and solving it, as in previous methods, is not required. By comparing the simulation results obtained by the proposed method with those obtained by the well known mathematical methods, a good agreement between these results is obtained. The comparison validates the effectiveness of the proposed technique.

Keywords: Evolution theory, MATLAB, optimization, PSO, SEIG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
563 A Comparison of Exact and Heuristic Approaches to Capital Budgeting

Authors: Jindřiška Šedová, Miloš Šeda

Abstract:

This paper summarizes and compares approaches to solving the knapsack problem and its known application in capital budgeting. The first approach uses deterministic methods and can be applied to small-size tasks with a single constraint. We can also apply commercial software systems such as the GAMS modelling system. However, because of NP-completeness of the problem, more complex problem instances must be solved by means of heuristic techniques to achieve an approximation of the exact solution in a reasonable amount of time. We show the problem representation and parameter settings for a genetic algorithm framework.

Keywords: Capital budgeting, knapsack problem, GAMS, heuristic method, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
562 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

Authors: Alberto Hananel

Abstract:

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
561 Fuzzy Voting in Internal Elections of Educational and Party Organizations

Authors: R. Hosseingholizadeh

Abstract:

This article presents a method for elections between the members of a group that is founded by fuzzy logic. Linguistic variables are objects for decision on election cards and deduction is based on t-norms and s-norms. In this election-s method election cards are questionnaire. The questionnaires are comprised of some questions with some choices. The choices are words from natural language. Presented method is accompanied by center of gravity (COG) defuzzification added up to a computer program by MATLAB. Finally the method is illustrated by solving two examples; choose a head for a research group-s members and a representative for students.

Keywords: fuzzy election, fuzzy electoral card, fuzzy inference, questionnaire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
560 Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities

Authors: Min Sun, Jing Liu

Abstract:

In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.

Keywords: structured variational inequalities, proximal point method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
559 A Study of Cooperative Co-evolutionary Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem

Authors: Lee Yih Rou, Hishammuddin Asmuni

Abstract:

Flexible Job Shop Problem (FJSP) is an extension of classical Job Shop Problem (JSP). The FJSP extends the routing flexibility of the JSP, i.e assigning machine to an operation. Thus it makes it more difficult than the JSP. In this study, Cooperative Coevolutionary Genetic Algorithm (CCGA) is presented to solve the FJSP. Makespan (time needed to complete all jobs) is used as the performance evaluation for CCGA. In order to test performance and efficiency of our CCGA the benchmark problems are solved. Computational result shows that the proposed CCGA is comparable with other approaches.

Keywords: Co-evolution, Genetic Algorithm (GA), Flexible JobShop Problem(FJSP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
558 More on Gaussian Quadratures for Fuzzy Functions

Authors: Shu-Xin Miao

Abstract:

In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.

Keywords: Guassian quadrature rules, fuzzy number, fuzzy integral, fuzzy solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
557 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

Authors: M. Momeni Feyli

Abstract:

Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.

Keywords: Mesons, Bound states, Schrodinger equation, Nonrelativistic quark model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
556 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali

Abstract:

We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: Explicit group iterative method, finite difference, fourth order compact, Poisson equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681