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A Study of Cooperative Co-evolutionary
Genetic Algorithm for Solving Flexible Job
Shop Scheduling Problem
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Brucker and Schlie[3] were the first to develop the

Abstract—Flexible Job Shop Problem (FJSP) is an extension ¢folynomial algorithm for solving the FISP problerithatwo

classical Job Shop Problem (JSP). The FJSP extimdsouting
flexibility of the JSP, i.e assigning machine to @gperation. Thus it
makes it more difficult than the JSP. In this stu@poperative Co-
evolutionary Genetic Algorithm (CCGA) is present@dsolve the
FJSP. Makespan (time needed to complete all jabs)séd as the
performance evaluation for CCGA. In order to temtfgrmance and
efficiency of our CCGA the benchmark problems aved.
Computational result shows that the proposed CC&£omparable
with other approaches.

jobs. In the recent years, there are a growing runds
literatures in the FJSP. The related publicatiorClen et
al.[5], Dauzere-Péres and Paulli[6], Kacem et hl.King et
al.[8], and Yadazni et al.[9] [10] among others. dug the
literatures, it can be categorized into the hidriaal approach
or the integrated approach. The hierarchical apgrcolves
the machine selection problem and operation sedugnc
problem hierarchical (assign then sequence) heniices
the difficulties of the FISP. Brandimarte[11], v&ul this FISP

Keywords—Co-evolution, Genetic Algorithm (GA), Flexible Job pigrarchically. He adopted the dispatching rulesdtve the

Shop Problem(FJSP)

I. INTRODUCTION

ODAY'’s manufacturing industries are concernedordy
on the cost and quality of the product, but they also

concern about the delivery performance of the produ Gambardella[13]

Besides that, the delivery performance also becartes! to
secure competitive advantages. Therefore schedplayg an
important role in the manufacturing process. A scite is an
allocation of the operation to the time intervala the
machines. To find a best schedule it can be eitber easy or
very difficult, and it depends on the process aaiist, shop
environment and performance indicator (makesparchina
workload). Job Shop Problem (JSP) is a branch adymstion
manufacturing and it is a hardest combinatoriabfgm. The

classical JSP consist afjobs andm machines and each job parallel

has a sequence of operations. The problem of tReis)$he
sequence of the operations on the machine in dadénd a
minimum makespan (time needed to complete all jobs)

In order to make the JSP closer to the real wofldhe
manufacturing system, the JSP is extended to Réexibb
Shop Problem (FJSP). In FISP an operation camdeessed
by more than one machines, but in the JSP one tipeiEan
be processed by exactly one machine. Thus the pd&ent
two difficulties:

i Machine selection problem, assigned a suitable
appropriate machine to an operation.

i Operation sequencing problem, sequence

operation on the machine in order to find a minimur®

makespan.
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machine selection problem then solved the sequgncin
problem using the different Tabu Search (TS). Havethe
integrated approaches solve the machine selectiohlgm
and operation sequencing problem simultaneouslyzBea-
Péres and Paullif6], Hurink et al[12], Mastroliland
adopted the integrated approach and
proposed a different TS for solving the FJSP. Ieirth
approach, there is no distinction in solving thebbem of
machine selection and operation sequence problem.

In recent years the GA has been successfully adote
solve the FJSP, and this can be proved by the ggomiimber
of publication. The relevant works are Mesghounaletl4],
Chen et al.[5] and Kacem et al.[7]. Mesghouni dtL4] were
the first to model the GA for the FJSP; they praubshe
job  representation and parallel machines
representation. Chen et al[5] also proposed a new
chromosome representation that consists of twogsri.eA
String and B String A String is defined by the routing
problem whereasB String defines the sequence on the
operation problem. Lastly Kacem et al.[7], proposedask
sequencing list as the chromosome representatiat th
combines both the routing and sequencing informatio
Besides that, they developed an approach by thaization
to find a promising initial assignment.
or In this study we proposed a cooperative co-evohaiy
genetic algorithm (CCGA) for the FISP. In CCGA, HiISP

tﬂﬁ decomposed into two problems (sub problem). Each

roblem is evolved by a single GA. In this way, tparallel
searches on two sub problem are more efficient thaimgle
search on entire problem.

Il. PROBLEM DESCRIPTION

FJSP consist of a set of jobs J = {J;, J,...,J} and
processed by m set of machinds= {M;, M,,...,M}. A job J;
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is formed by a sequence of operatio®g (Os,... Op), . Each

problem[15]. Co-evolutionary is categorized into eth

operationO,,, i.e the operation from jobi can be executed on cooperative co-evolutionary and competitive co-atiohary.

any machine from the predetermined alternative mnacket

M; M. The processing time for each operati@, is
predetermined. All jobs and machines are availabliéme 0.
There are three constraints for jobs and machines:

Here, we will focus on the cooperative co-evoludion
algorithm, and it is because of the trend of curmesearch
which focuses on the cooperative co-evolutionagpaihm.

In this research we present Cooperative Co-evalatip

i. There are precedence constraints among the operat®enetic Algorithm (CCGA) for solving the FISP. TBEGA

of the same job.
ii. Each operation must
interruption once started.
iii. Each machine can only execute one operation
time.
There are two problems presented in the FISP thatha

be

is first proposed by De Jong and Potter[16] to iower the

completed withoutraditional GA that has a slow evolution procees large

search space[17]. CCGA uses the strategy of diddd
atcanquer. CCGA divides or splits a big problem istoaller
problems i.e species, each of this species is septimg the
partial solution of the problem. Each species igntained in a

machine assignment problem and operation sequencipgpulation that contains different individuals (@mosomes).

problem. In the machine assignment problem an gpiate

machine is selected and assigned to an operatieneat the

operation sequencing problem is to sequence thetpe on
the machine in order to minimized the makespan,the time
needed to complete all the jobs. Makespan is defase,, =
max {C;} whereC; is the completion time for job.

The flexibility of the FISP can be categorized iptutial
flexibility and total flexibility[7]. In the case fo partial
flexibility each operation can only be executed ayjimited

Furthermore these species evolve independently bingle
genetic algorithm. Therefore during the individsafitness
evaluation process, the individual is cooperatedh wits
cooperative partner to form a complete solutiorcatculate
the individual's fitness.

In our algorithm there are two populations, and heac
population represents the difficulties of the F#SRnentioned
in section Il. The first population is the machiselection
populationPopM(N)={1,2,...N}, and the second population is

number of machines; # M. However in the case of total the operation sequencing populatidtopQN)={1,2,...N}.

flexibility each operation can be processed by awmgilable
machinesv; LIM.

Problem instance of the FJSP with partial flexipilis
given in TABLE I. In TABLE |, each rows corresportd
operations and columns representing the machineh Hait
value in the table is the processing time of thechires.

Since these two populations have different featuaesl
therefore the genetic operation and individual éspntation
are different for both populations. Moreover theadle of
these two populations are explained in sectionadCla

B.Cooperative partner selection and fitness evaluatio

However the symbol “” means that the machine canng There is a great difference between GA and CCGahén

execute the corresponding operation.

TABLE | PROCESSING TIME TABLE

Job Operation Machines

M M M. M. M

J Oy 2 6 5 4 3
Oy; - 8 - 4 -

N’} On 2 2 - 8 -
Oy 8 7 5 4 8

N O3 6 - - 9 3
Os; 1 4 4 -

035 7 5 - 6 -

J Oy 3 6 - 5
Oy; 4 6 5 -
Oz 8 7 11 5 8

Ill. COOPERATIVE CGEVOLUTIONARY GENETIC ALGORITHM
FOR FJSP

A.Cooperative co-evolutionary genetic algorithm

Co-evolutionary algorithm introduces the concept
ecosystem that involves two or more interacting cise
During the evolution process there are interactibatveen
individual from different species. However, in cemtional
genetic algorithm (GA) the individual does not natet with
the individual from other species. Co-evolutionatgorithm
is reported that it provides a promising alterratito a
standard evolutionary algorithm in a complex andhadyic

International Scholarly and Scientific Research & Innovation 4(12) 2010

fitness evaluation. In GA, fitness value of an indial is
dependent on the quality of the solution and ievaluated
independently. Note that the quality we considdrerk is the
makespan. But in CCGA the individual’s fitness degse on
how well it cooperates with its cooperative partriEnus to
evaluate the CCGA individual's fitness value, thetihod to
select cooperative partner should be determined. firhere
are various methods to select the cooperative gagnd we
have conducted some testing on the randomly satetselect
the best cooperative partner. The computationalultres
indicates that the randomly select cooperative givbetter
result among others.

Roulette wheel selection is chosen to select thévisual
for reproduction. By using this method, individwéth higher
fitness will have a higher probability to be setett Thus it
has increased the chance to produce individualk bétter
fithess. The individual's fitness is calculatedusing (1), and
the fitness value is in the range of 0 to 1.

of _ gq(s)'{ma"uEPOPM[q]gq(u)“}
fa(s) =— €Y)
minyepopMiq] 9q (U-)—{maxuePopM[q]gq(u)+1}

In (1) fy(s) is the fitness of s¢h individual in a population
PopMqd] (g=1,2, number of individual). Whilgq(u) is the
makespan of uh individual when it cooperates with the
cooperative partner fronPopQ The equation rescaled the
value ofgy(s) so that it makes the selection more effective and
deals with minimum problem.
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C.Genetic component for machine selection My, Ms} (refer to TABLE | ninth row and third columnMsis
1) Initial population the selected and assigned machine for its chamgdg @; to
In order to generate a promising initial population the Ms
machine selection problem, we adopt two approaches [o} 0, e}
presented by Pezzella et al[2]. The first approash NI} M My -
AssignmentRulel(search for the global minimum in the jz mz m3 M
. .. 3 5 4
processing table) and the second approadisssgnmentRule2 I M M, (,\T;)«
(randomly permute jobs and machine in the procgssihle). Parent _ ‘ 1
These two approaches are the modified version ef th Alternative machine sets
L . [M: [ Mo [ Ms [ Mg T Ms))
approach of localization by Kacem et al.[7]. In thmdtial
population 10% of the individual is generated by 0, 0, 0,
AssignmentRuleand 90% of the individual is generated by J M, Ma -
AssignmentRule2. jz mz m3 "
2) Individual representation 3 M, M | (M«

Parallel job representatio®d) was used as the individual  Offspring
representation in the machine selection problBd.is first
introduced by Meshouni et al.[14]. THPS) is represented in a
matrix form, where each row of the matrix is anevetl series
of operation for each job. Meanwhile, each celtref matrix D.Genetic component for operation sequence
consists of assigned machine and the starting @ifrtae job 1) |njtial population

operation. Moreover, this representation allowshbobw Initial population of the operation sequence isagi#d by
crossover and column crossover to be easily peddrBut it  sequencing the operation on machine based on flial in
needs a repairing mechanism to recalculate théirgaime population of machine selection. Initial populatiois

for every job operation after performing the genefperation. generated from the mixing of three well know dispétg
Thus, we have improved thiJ. with some modifications to ryles such as the most work remaining (MWR), most
avoid production of infeasible solution. In our apach, each gperation remaining (MOR) and random select job JRS
cell of PJ only consists of the assigned machine and thishere are 40% of individual generated by MWR, 40% o

Fig. 1 Mutation for parallel job representation

machine is selected from the assignment rule. individual generated by MOR and 20% of individual i
TABLE Il PARALLEL JOB REPRESENTATION generated by RSJ.
O, Oy Os 2) Individual representation
j; m; m;‘ i Operation sequence representation is used to entmde
Js Ms M, M, operation sequencing problem. In this represemtatidl
Js Ms My M, operations for the same job are defined with a saymebol
and it interprets them according to the order. Tlnfgasible
3) Genetic operation solution can be avoided by using the same symbolte

There are two crossover operator used to produneva same job. The chromosome length L is the total atjmers of
offspring. Row crossover and column crossover amtbptall jobs. An example of the operation sequenceessrtation
from[14] are used in our approach as these operalovays is constructed based on TABLE I. In TABLE | jdbconsists
produce a legal offspring. The algorithm for thevrorossover of two operations @,, - O5) and job J, consists of two
is given as: operations Q,; - O,,). However for jobJ; andJ, each of this

Stepl. Two individuals are randomly selected by thb consist of three operations. The operationslf@re Qs -
roulette wheel selection. One job (row of matrix)is) 0;-0s3) andJ, are 4-04-043). In Fig. 2 a chromosome

randomly selected. that contains of 2-1-3-4-4-2-3-1-448 constructed. This data
Step2. The assigned machine for the selected jolains is read from left to right and there is an incragsoperation
unchanged for both selected individuals. index for each job. Thus it can be translated ®4p Oy;- Os;-

Step3. Swap the assigned machine for the remajomépr  O,;- Oyp- Osp- Oz~ Oy~ Oy~ Oss.
both individuals. N Operation Sequence representation
The step for column crossover is similar to the row [2]1]3[ 4] 4 2] 3§ 1 4 3
crossover, but the column crossover is swapped Hey t
selected operation (column of the matrix) for thedested
individual. Fig. 2 Operation sequence representation
Mutation operator only changed the machine assighme
properties of the individual. In Fig. 1, an exampfenutation ~3) Genetic operator
operation performed on tHeJ. Firstly a jobJ, and operation N applying the crossover operator for the represem of
O, are selected to perform the mutation, and theeotiy operation the sequencing precedence of constraiohg job
assigned machine i#1,. Secondly, a machine randomlyMmust not be violated because it might be produeingllegal
selected from an alternative machine se¥lis {My, My, Ms, offspring, and to repair an illegal offspring isryetime
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consuming. Therefore therecedence order crossa (POX)
operator from Lee et al.[18] conceros the precedence orc
is adopted. The POX works as follows:

Step 1 Generate two sub-job sefJ} from all jobs and
select two parent individuals ag;@nd Q; randomly;

Step 2 Copy any element ing{®s, that belons to J4/J

into the child individual @,/Og,, and retairthe same position

in Os’l/Os’Z;

Step 3 Delete the elements that are alr in the sub-job
/X2 from Qsy/Ogs,

Step 4 Orderly fills the empty position irg1/Og» With the
remainder elements of@0;;

In Fig. 3 we used chromosome representation that cor
of 4 jobs to demonstrate the procedure of POXtFive sub
jobs are generated, ¥ {2,3}, J.={1,4}. After that, copythe
element in Q, which belongs to ¢ into the child Q; and,
remain in the same position. And it is followeddsleting the
element that is already in sub-joh flom Cg,. Lastly, fill the
empty position in Q- with the remainder elements 0.

Swap mutation is applied to theperation sequenc
representation. First, two positions of the chroomos are
randomly selected. Secondly, swap the elementeo§étecte:
position.

Og|2]1]3]4]4]2]3]1]4][3]

O [1]2]3]4[2]1[3]4]4][3]

PR’ ~N v
Ow[2]1]8]4[1[2]8]4]4[3]

O |[1]2]3]4][2]1[3]4]4][3]

Fig. 3Procedure of precedence order cross

IV. PROPOSEDALGORITHM
The procedure for CCGA for FISP is given as be

Step 1. |Initialization. Generate initial population f
machine selection populatioPopM[k], k =
{1,2...N} and operation sequence popula

PopOl[q], q = {1,2...N}.

Initial fitness evaluation Each individual fron
PopM[kland PopO[q] is evaluated b
combining them with he cooperative partn
and set thd,.; to be the fithess value of tl
individual. Cooperative partner is randor
selected from other species to form a comg
solution.

Step 3: Co-evolution

Step 3.1 Select two parents fronthe population
based orthe fithess by the roulette whe
selection and applied crossover operatc
generate two new offspri
Mutation operator is applied to obtain n
offspring
Step 3.3 Evaluate the fitness value the new

Step 2:

Step 3.2

International Scholarly and Scientific Research & Innovation 4(12) 2010

offspring by combining it with the
cooperative partner. The random individt
best individual from previous evaluati
and individual wh stay at the same
position is being evaluated and is selet
as thecooperative partnel

Set m—m+1.

If m<M (the number of species), then gc
Step 3.1 Otherwise go to Step
Termination If the termination criteria ar
satisfied, then the process will be stopr
Otherwise go tStep 3.

Step 3.4

Step 4

Fig. 4is shown to explain the algorithm framework cleatty
Fig. 4, a coevolutionary model of two species on this stud
given. It denotes the evolution process for eadtigs from
theperspective of each in tu

Evolution of PopM

Evolution of PopM

PopO
N
( mEEmw Aopcp
< ASANNAN
Fitness evaluation .
Cogpef ative
=t

PopO

OO N
EEEE ARAAR
~ Fitnessevaluation

e

NN
A?AAA
Cadperative Fitness evaluation

Fig. 4 Cooperative cevolutionary genetic algorithm for FJ

V. COMPUTATIONAL RESULT

The proposed algorithm was implemented in javaan
Intel Core 2 Duo running at 2.40 GHz, and te on 10
dataset from BrandimafteEl]. This data set can be obtained
from http://www.idsia.ch/~monaldo/fisp.ht/. The job
number of the dataset is in the range of 10 tott2®,numbe
of machine is in the range of 4 to 15 and the nunufe
operations is in the range of 5 to In order to evaluate the
efficiency, the proposed algorithm was to 15 times on each
for every problem instancélhe genetic parameter used is
given as:
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TABLE Ill CoMPARISON OFCCGAWITH OTHER APPROACHES
Problem nxm Flex UB CCGA GENACE[1] GA[2] hGA[4]
PopSize G PopSize @ dev% PopSize W dev PopSize dev %
%

MKO1 10x6  2.09 (36,42) 2000 41 100 40 -2.50 5000 40 -2.50 3000 40 -2.50
MKO02 10x6 4.1 (24,32) 1000 27 100 29  +6.90 5000 6 2-3.85 3000 26 -3.85
MKO03 15x¢&¢ 3.01 (204,211 50C 204 10C  N/A N/A 500( 204  0.0C 200¢ 204 0.0C
MKO04 15x8 1.91 (48,81) 2500 62 100 67  +7.46 5000 60 -3.33 3000 60 -3.33
MKO05 15x4 1.71 (168,186) 1000 173 100 176  +1.70 0006 173 0 1000 172 -0.58
MKO06 10x 1t 3.27 (33,86 200¢ 64 10C 67  +4.4¢ 500( 63 -1.5¢ 200¢ 58 -10.3¢
MKO7 20x5 2.83 (133,157) 1000 140 100 147  +4.76 0006 139 -0.72 1000 139 -0.72
MKO08 20x10 1.43 523 500 523 100 523 0.00 5000 528.00 1000 523 0.00
MKO09 20x 10 253 (299,369) 1500 328 100 320 -2.505000 311 -547 1000 307 -6.84
MK10 20x15 2.98 (165,296) 2000 225 100 229  +1.755000 212  -6.13 2000 197 -14.21
Average improvement +2.21 -2.36 -4.24

= Population size: 500 to 2500
= Number of generation: 1000 VI. CONCLUSION

= Crossover rates: 0.7 Cooperative co-evolutionary genetic algorithm ispmsed

* Mutation rates: 0.01 . to solve the FIJSP problem in this study. The coatjnral

The computational result is compared with the GEMA gyt in TABLE Il indicates that our CCGA is coamable
from Ho and Tay[1], GA from Pezzella et al.[2] ahgbrid  ith other approaches. In CCGA, the FISP is dividealtwo
GA from Yadzni et al.[9] is given in TABLE IIl. Irtolumn 2. ghecies based on its difficulties and each of thameeies is
nxm denotes the number of josnumber of machines, and yaintained in a population. Furthermore by mairitajn

Flexin column 3 denotes the average number of madoine gifferent species in different population, the plagion does

eac_h operation while tHeop Sizeepresents t_he pppulatlon not converge to a single individual. Besides theach
size used for every problem, the population sizgedés on  opyation evolves by a standard genetic algoritirom Fig.

the complexity of the problem (eg. number of maehin 5 iy section V, it can be observed that adopting parallel

number of job, flexibility of the problem).The beskespan gearches in two small problems is more efficienhgared to

obtained from our CCGA after 5 runs of experimest iy single search in a big problem. Besides that, S8G@eeds

denoted asCy in column 6. The best makespan from thg, the convergence. In future the techniquéhia study can

GENACE, GA and hGA is represented in column 8,1d & o applied in other areas such as project planning

respectively.  Moreover, the relative deviatisndefined as management, and transportation scheduling problem.

dev = [Cu(CCGA) - Cu(Comp)) / Cy(Comp)]*100%.

Cu(Comp) is the makespan that we compared to, while Evolution process for CCGA and GA on Mk10
Cu(CCGA) is the makespan obtained from our CCGA. The 300 -
13" row in the table denotes the average improvementio 290 -
CCGA compared with other approaches. 280 - GA
The PopSize (population size) used for our CCGA is 270 - v

smaller compared to GA[2] and hGA. Although the glagion
size used for GENACE is 100 and it is smaller corag&o

Makespan
N
a
o

the population size of our CCGA, but the makespatained 240 - ceeA
by our CCGA has outperformed the GENACE[1]. 230 -
In order to compare the performance of our CCGA @Ad 220 4
we developed a GA that uses the same genetic aperat 210
However the chromosome representation used in GAists 200

—

of two parts that are the machine selection (pargbhb
representation) and operation sequence (operaggnesce
representation). Besides that, the genetic paramested to
test GA is the similar with parameter stated int®ecV. In
Fig 5, comparison on the evolution process for @4 @CGA
on benchmark problem MKk10 is given. In Fig 5, CCGA
obtains makespan of 225 in the $1@eneration. However at

: : : N.B. Ho and J.C. Tay. GENACE: an efficient cultuedgorithm for
the 313*‘ generation the makespan obtained by GA is 270. G[A] solving the flexible job-shop problem. iBvolutionary Computation,

o
< 0 N ©
—

201
241
281
321
361

o
O 0N ©
T TOW

601
641

o o
O N © O < ©
© N~ N~ 00 0 0

921
961

Number of Generation
Fig. 5 Comparison on evolution process for CCGA @&dd
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