Search results for: signal processing..
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2517

Search results for: signal processing..

2277 Adaptive Noise Reduction Algorithm for Speech Enhancement

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Least Mean Square (LMS) adaptive noise reduction algorithm is proposed to enhance the speech signal from the noisy speech. In this, the speech signal is enhanced by varying the step size as the function of the input signal. Objective and subjective measures are made under various noises for the proposed and existing algorithms. From the experimental results, it is seen that the proposed LMS adaptive noise reduction algorithm reduces Mean square Error (MSE) and Log Spectral Distance (LSD) as compared to that of the earlier methods under various noise conditions with different input SNR levels. In addition, the proposed algorithm increases the Peak Signal to Noise Ratio (PSNR) and Segmental SNR improvement (ΔSNRseg) values; improves the Mean Opinion Score (MOS) as compared to that of the various existing LMS adaptive noise reduction algorithms. From these experimental results, it is observed that the proposed LMS adaptive noise reduction algorithm reduces the speech distortion and residual noise as compared to that of the existing methods.

Keywords: LMS, speech enhancement, speech quality, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805
2276 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
2275 Characteristic of Discrete Raman Amplifier at Different Pump Configurations

Authors: Parekhan M. Jaff

Abstract:

This paper describes the gain and noise performances of discrete Raman amplifier as a function of fiber lengths and the signal input powers for different pump configurations. Simulation has been done by using optisystem 7.0 software simulation at signal wavelength of 1550 nm and a pump wavelength of 1450nm. The results showed that the gain is higher in bidirectional pumping than in counter pumping, the gain changes with increasing the fiber length while the noise figure remain the same for short fiber lengths and the gain saturates differently for different pumping configuration at different fiber lengths and power levels of the signal.

Keywords: Optical Amplifier, Raman Amplifier DiscreteRaman Amplifier (DRA), Wavelength Division Multiplexing(WDM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
2274 A Comparison of Signal Processing Techniques for the Extraction of Breathing Rate from the Photoplethysmogram

Authors: Susannah G. Fleming Lionel Tarassenko

Abstract:

The photoplethysmogram (PPG) is the pulsatile waveform produced by the pulse oximeter, which is widely used for monitoring arterial oxygen saturation in patients. Various methods for extracting the breathing rate from the PPG waveform have been compared using a consistent data set, and a novel technique using autoregressive modelling is presented. This novel technique is shown to outperform the existing techniques, with a mean error in breathing rate of 0.04 breaths per minute.

Keywords: Autoregressive modelling, breathing rate, photoplethysmogram, pulse oximetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
2273 Synchronization Technique for Random Switching Frequency Pulse-Width Modulation

Authors: Apinan Aurasopon, Worawat Sa-ngiavibool

Abstract:

This paper proposes a synchronized random switching frequency pulse width modulation (SRSFPWM). In this technique, the clock signal is used to control the random noise frequency which is produced by the feedback voltage of a hysteresis circuit. These make the triangular carrier frequency equaling to the random noise frequency in each switching period with the symmetrical positive and negative slopes of triangular carrier. Therefore, there is no error voltage in PWM signal. The PSpice simulated results shown the proposed technique improved the performance in case of low frequency harmonics of PWM signal comparing with conventional random switching frequency PWM.

Keywords: Random switching frequency pulse - width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
2272 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
2271 H.263 Based Video Transceiver for Wireless Camera System

Authors: Won-Ho Kim

Abstract:

In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.

Keywords: Digital signal processing, H.263 video encoder, surveillance camera, wireless video transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2270 Exploring the Sources of Innovation in Food Processing SMEs of Kerala

Authors: Bhumika Gupta, Jeayaram Subramanian, Hardik Vachhrajani, Avinash Shivdas

Abstract:

Indian food processing industry is one of the largest in the world in terms of production, consumption, exports and growth opportunities. SMEs play a crucial role within this. Large manufacturing firms largely dominate innovation studies in India. Innovation sources used by SMEs are often different from that of large firms. This paper focuses on exploring various sources of innovation adopted by food processing SMEs in Kerala, South India. Outcome suggests that SMEs use various sources like suppliers, competitors, employees, government/research institutions and customers to get new ideas.

Keywords: Food processing, innovation, SMEs, sources of innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006
2269 Watermark-based Counter for Restricting Digital Audio Consumption

Authors: Mikko Löytynoja, Nedeljko Cvejic, Tapio Seppänen

Abstract:

In this paper we introduce three watermarking methods that can be used to count the number of times that a user has played some content. The proposed methods are tested with audio content in our experimental system using the most common signal processing attacks. The test results show that the watermarking methods used enable the watermark to be extracted under the most common attacks with a low bit error rate.

Keywords: Digital rights management, restricted usage, content protection, spread spectrum, audio watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
2268 sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: Classifiers, feature selection, locomotion, sEMG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
2267 IEEE 802.11 b and g WLAN Propagation Model using Power Density Measurements at ESPOL

Authors: E. E. Mantilla, C. R. Reyes, B. G. Ramos

Abstract:

This paper describes the development of a WLAN propagation model, using Spectral Analyzer measurements. The signal is generated by two Access Points (APs) on the base floor at the administrative Communication School of ESPOL building. In general, users do not have a Q&S reference about a wireless network; however, this depends on the level signal as a function of frequency, distance and other path conditions between receiver and transmitter. Then, power density of the signal decrease as it propagates through space and data transfer rate is affected. This document evaluates and implements empirical mathematical formulation for the characterization of WLAN radio wave propagation on two aisles of the building base floor.

Keywords: frequency, Spectral Analyzer, transmitter, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
2266 Adaptive WiFi Fingerprinting for Location Approximation

Authors: Mohd Fikri Azli bin Abdullah, Khairul Anwar bin Kamarul Hatta, Esther Jeganathan

Abstract:

WiFi has become an essential technology that is widely used nowadays. It is famous due to its convenience to be used with mobile devices. This is especially true for Internet users worldwide that use WiFi connections. There are many location based services that are available nowadays which uses Wireless Fidelity (WiFi) signal fingerprinting. A common example that is gaining popularity in this era would be Foursquare. In this work, the WiFi signal would be used to estimate the user or client’s location. Similar to GPS, fingerprinting method needs a floor plan to increase the accuracy of location estimation. Still, the factor of inconsistent WiFi signal makes the estimation defer at different time intervals. Given so, an adaptive method is needed to obtain the most accurate signal at all times. WiFi signals are heavily distorted by external factors such as physical objects, radio frequency interference, electrical interference, and environmental factors to name a few. Due to these factors, this work uses a method of reducing the signal noise and estimation using the Nearest Neighbour based on past activities of the signal to increase the signal accuracy up to more than 80%. The repository yet increases the accuracy by using Artificial Neural Network (ANN) pattern matching. The repository acts as the server cum support of the client side application decision. Numerous previous works has adapted the methods of collecting signal strengths in the repository over the years, but mostly were just static. In this work, proposed solutions on how the adaptive method is done to match the signal received to the data in the repository are highlighted. With the said approach, location estimation can be done more accurately. Adaptive update allows the latest location fingerprint to be stored in the repository. Furthermore, any redundant location fingerprints are removed and only the updated version of the fingerprint is stored in the repository. How the location estimation of the user can be predicted would be highlighted more in the proposed solution section. After some studies on previous works, it is found that the Artificial Neural Network is the most feasible method to deploy in updating the repository and making it adaptive. The Artificial Neural Network functions are to do the pattern matching of the WiFi signal to the existing data available in the repository.

Keywords: Adaptive Repository, Artificial Neural Network, Location Estimation, Nearest Neighbour Euclidean Distance, WiFi RSSI Fingerprinting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3460
2265 An Improved Algorithm for Channel Estimations of OFDM System based Pilot Signal

Authors: Ahmed N. H. Alnuaimy, Mahamod Ismail, Mohd. A. M. Ali, Kasmiran Jumari, Ayman A. El-Saleh

Abstract:

This paper presents a new algorithm for the channel estimation of the OFDM system based on a pilot signal for the new generation of high data rate communication systems. In orthogonal frequency division multiplexing (OFDM) systems over fast-varying fading channels, channel estimation and tracking is generally carried out by transmitting known pilot symbols in given positions of the frequency-time grid. In this paper, we propose to derive an improved algorithm based on the calculation of the mean and the variance of the adjacent pilot signals for a specific distribution of the pilot signals in the OFDM frequency-time grid then calculating of the entire unknown channel coefficients from the equation of the mean and the variance. Simulation results shows that the performance of the OFDM system increase as the length of the channel increase where the accuracy of the estimated channel will be increased using this low complexity algorithm, also the number of the pilot signal needed to be inserted in the OFDM signal will be reduced which lead to increase in the throughput of the signal over the OFDM system in compared with other type of the distribution such as Comb type and Block type channel estimation.

Keywords: Channel estimation, orthogonal frequency divisionmultiplexing (OFDM), comb type channel estimation, block typechannel estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
2264 64 bit Computer Architectures for Space Applications – A study

Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy

Abstract:

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
2263 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
2262 Ontologies for Complex Event Processing

Authors: Irina Astrova, Arne Koschel, Jan Lukanowski, Jose Luis Munoz Martinez, Valerij Procenko, Marc Schaaf

Abstract:

In this paper, five ontologies are described, which include the event concepts. The paper provides an overview and comparison of existing event models. The main criteria for comparison are that there should be possibilities to model events with stretch in the time and location and participation of objects; however, there are other factors that should be taken into account as well. The paper also shows an example of using ontologies in complex event processing.

Keywords: Ontologies, events, complex event processing (CEP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
2261 Analysis of Complex Quadrature Mirror Filter Banks

Authors: Chimin Tsai

Abstract:

This work consists of three parts. First, the alias-free condition for the conventional two-channel quadrature mirror filter bank is analyzed using complex arithmetic. Second, the approach developed in the first part is applied to the complex quadrature mirror filter bank. Accordingly, the structure is simplified and the theory is easier to follow. Finally, a new class of complex quadrature mirror filter banks is proposed. Interesting properties of this new structure are also discussed.

Keywords: Aliasing cancellation, complex signal processing, polyphase realization, quadrature mirror filter banks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
2260 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: Document processing, framework, formal definition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
2259 A Performance Comparison of Golay and Reed-Muller Coded OFDM Signal for Peak-to-Average Power Ratio Reduction

Authors: Sanjay Singh, M Sathish Kumar, H. S Mruthyunjaya

Abstract:

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication systems. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. A major drawback of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal which can significantly impact the performance of the power amplifier. In this paper we have compared the PAPR reduction performance of Golay and Reed-Muller coded OFDM signal. From our simulation it has been found that the PAPR reduction performance of Golay coded OFDM is better than the Reed-Muller coded OFDM signal. Moreover, for the optimum PAPR reduction performance, code configuration for Golay and Reed-Muller codes has been identified.

Keywords: OFDM, PAPR, Perfect Codes, Golay Codes, Reed-Muller Codes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
2258 A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals

Authors: V. Prapulla, A. Mitra, R. Bhattacharjee, S. Nandi

Abstract:

We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.

Keywords: Adaptive decision feedback equalizer, Fractionally spaced equalizer, π/4 DQPSK signal, Digital signal processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5737
2257 Improved Feature Processing for Iris Biometric Authentication System

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.

Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
2256 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
2255 Goal Based Episodic Processing in Implicit Learning

Authors: Peter A. Bibby

Abstract:

Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.

Keywords: Episodic processing, incidental learning, implicitlearning, invariant learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
2254 M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis

Authors: Tong Liu, Xuan Xu, Xiaodi Wang

Abstract:

Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.

Keywords: discrete M-band wavelet transform , discrete M-band wavelet transform, randomized watermark, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
2253 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

Authors: Jungho Choi, Youngwan Cho

Abstract:

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
2252 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
2251 Single Input ANC for Suppression of Breath Sound

Authors: Yunjung Lee, Pil Un Kim, Gyhyoun Lee, Jin Ho Cho, Myoung Nam Kim

Abstract:

Various sounds generated in the chest are included in auscultation sound. Adaptive Noise Canceller (ANC) is one of the useful techniques for biomedical signal. But the ANC is not suitable for auscultation sound. Because the ANC needs two input channels as a primary signal and a reference signals, but a stethoscope can provide just one input sound. Therefore, in this paper, it was proposed the Single Input ANC (SIANC) for suppression of breath sound in a cardiac auscultation sound. For the SIANC, it was proposed that the reference generation system which included Heart Sound Detector, Control and Reference Generator. By experiment and comparison, it was confirmed that the proposed SIANC was efficient for heart sound enhancement and it was independent of variations of a heartbeat.

Keywords: Adaptive noise canceller, Auscultation, Breath soundsuppression, Signal enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
2250 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
2249 Comparative Study on Recent Integer DCTs

Authors: Sakol Udomsiri, Masahiro Iwahashi

Abstract:

This paper presents comparative study on recent integer DCTs and a new method to construct a low sensitive structure of integer DCT for colored input signals. The method refers to sensitivity of multiplier coefficients to finite word length as an indicator of how word length truncation effects on quality of output signal. The sensitivity is also theoretically evaluated as a function of auto-correlation and covariance matrix of input signal. The structure of integer DCT algorithm is optimized by combination of lower sensitive lifting structure types of IRT. It is evaluated by the sensitivity of multiplier coefficients to finite word length expression in a function of covariance matrix of input signal. Effectiveness of the optimum combination of IRT in integer DCT algorithm is confirmed by quality improvement comparing with existing case. As a result, the optimum combination of IRT in each integer DCT algorithm evidently improves output signal quality and it is still compatible with the existing one.

Keywords: DCT, sensitivity, lossless, wordlength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2248 55 dB High Gain L-Band EDFA Utilizing Single Pump Source

Authors: M. H. Al-Mansoori, W. S. Al-Ghaithi, F. N. Hasoon

Abstract:

In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression.

Keywords: Optical amplifiers, EDFA, L-band, optical networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984