Search results for: multivariate statistical analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9333

Search results for: multivariate statistical analysis.

9093 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
9092 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine

Abstract:

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
9091 Throughput Analysis over Power Line Communication Channel in an Electric Noisy Scenario

Authors: Edward P. Guillen, Julián J. López, Cesar Y. Barahona

Abstract:

Powerline Communications –PLC– as an alternative method for broadband networking, has the advantage of transmitting over channels already used for electrical distribution or even transmission. But these channels have been not designed with usual wired channels requirements for broadband applications such as stable impedance or known attenuation, and the network have to reject noises caused by electrical appliances that share the same channel. Noise control standards are difficult to complain or simply do not exist on Latin-American environments. This paper analyzes PLC throughput for home connectivity by probing noisy channel scenarios in a PLC network and the statistical results are shown.

Keywords: Power Line Communications, OFDM, Noise Analysis, Throughput Analysis, PLC, Home Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
9090 Investigation of Anti-diabetic and Hypocholesterolemic Potential of Psyllium Husk Fiber (Plantago psyllium) in Diabetic and Hypercholesterolemic Albino Rats

Authors: Ishtiaq Ahmed, Muhammad Naeem, Abdul Shakoor, Zaheer Ahmed, Hafiz Muhammad Nasir Iqbal

Abstract:

The present study was conducted to observe the effect of Plantago psyllium on blood glucose and cholesterol levels in normal and alloxan induced diabetic rats. To investigate the effect of Plantago psyllium 40 rats were included in this study divided into four groups of ten rats in each group. One group A was normal, second group B was diabetic, third group C was non diabetic and hypercholesterolemic and fourth group D was diabetic and hypercholesterolemic. Two groups B and D were made diabetic by intraperitonial injection of alloxan dissolved in 1mL distilled water at a dose of 125mg/Kg of body weight. Two groups C and D were made hypercholesterolemic by oral administration of powder cholesterol (1g/Kg of body weight). The blood samples from all the rats were collected from coccygial vein on 1st day, then on 21st and 42nd day respectively. All the samples were analyzed for blood glucose and cholesterol level by using enzymatic kits. The blood glucose and cholesterol levels of treated groups of rats showed significant reduction after 7 weeks of treatment with Plantago psyllium. By statistical analysis of results it was found that Plantago psyllium has anti-diabetic and hypocholesterolemic activity in diabetic and hypercholesterolemic albino rats.

Keywords: Albino rats, alloxan, Plantago psyllium, statistical analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
9089 Transmitting a Distance Training Model to the Community in the Upper Northeastern Region

Authors: Teerawach Khamkorn, Laongtip Mathurasa, Savittree Rochanasmita Arnold, Witthaya Mekhum

Abstract:

The objective of this research seeks to transmit a distance training model to the community in the upper northeastern region. The group sampling consists of 60 community leaders in the municipality of sub-district Kumphawapi, Kumphawapi Disrict, Udonthani Province. The research tools rely on the following instruments, they are : 1) the achievement test of community leaders- training and 2) the satisfaction questionnaires of community leaders. The statistics used in data analysis takes the statistical mean, percentage, standard deviation, and statistical T-test. The resulted findings reveal : 1) the efficiency of the distance training developed by the researcher for the community leaders joining in the training received the average score between in-training and post-training period higher than the setup criterion, 2) the two groups of participants in the training achieved higher knowledge than their pre-training state, 3) the comparison of the achievements between the two group presented no different results, 4) the community leaders obtained the high-to-highest satisfaction.

Keywords: Distance Training, Management, Technology, Transmitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
9088 Data Mining on the Router Logs for Statistical Application Classification

Authors: M. Rahmati, S.M. Mirzababaei

Abstract:

With the advance of information technology in the new era the applications of Internet to access data resources has steadily increased and huge amount of data have become accessible in various forms. Obviously, the network providers and agencies, look after to prevent electronic attacks that may be harmful or may be related to terrorist applications. Thus, these have facilitated the authorities to under take a variety of methods to protect the special regions from harmful data. One of the most important approaches is to use firewall in the network facilities. The main objectives of firewalls are to stop the transfer of suspicious packets in several ways. However because of its blind packet stopping, high process power requirements and expensive prices some of the providers are reluctant to use the firewall. In this paper we proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. By discriminating these data, an administrator may take an approach action against the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
9087 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
9086 The Application of the Queuing Theory in the Traffic Flow of Intersection

Authors: Shuguo Yang, Xiaoyan Yang

Abstract:

It is practically significant to research the traffic flow of intersection because the capacity of intersection affects the efficiency of highway network directly. This paper analyzes the traffic conditions of an intersection in certain urban by the methods of queuing theory and statistical experiment, sets up a corresponding mathematical model and compares it with the actual values. The result shows that queuing theory is applied in the study of intersection traffic flow and it can provide references for the other similar designs.

Keywords: Intersection, Queuing theory, Statistical experiment, System metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7542
9085 Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays

Authors: Mohd Iqbal Ridwan, Kerk Lee Yen, Aminuddin Musa, Bahisham Yunus

Abstract:

Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.

Keywords: Life data analysis, Protective relays, Reliability, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3980
9084 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis

Authors: A.K. Tangirala, S. Babji

Abstract:

In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.

Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
9083 Development of a Complex Meteorological Support System for UAVs

Authors: Z. Bottyán, F. Wantuch, A. Z. Gyöngyösi, Z. Tuba, K. Hadobács, P. Kardos, R. Kurunczi

Abstract:

The sensitivity of UAVs to the atmospheric effects are apparent. All the same the meteorological support for the UAVs missions is often non-adequate or partly missing. In our paper we show a new complex meteorological support system for different types of UAVs pilots, specialists and decision makers, too. The mentioned system has two important parts with different forecasts approach such as the statistical and dynamical ones. The statistical prediction approach is based on a large climatological data base and the special analog method which is able to select similar weather situations from the mentioned data base to apply them during the forecasting procedure. The applied dynamic approach uses the specific WRF model runs twice a day and produces 96 hours, high resolution weather forecast for the UAV users over the Hungary. An easy to use web-based system can give important weather information over the Carpathian basin in Central-Europe. The mentioned products can be reached via internet connection.

Keywords: Aviation meteorology, statistical weather prediction, unmanned aerial systems, WRF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
9082 Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study

Authors: Mauro Giacomini, Stefania Bertone, Carlo Mansi, Pietro Dulbecco, Vincenzo Savarino

Abstract:

The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.

Keywords: Cluster analysis, constipation, data mining, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
9081 A File Splitting Technique for Reducing the Entropy of Text Files

Authors: Abdel-Rahman M. Jaradat, , Mansour I. Irshid, Talha T. Nassar

Abstract:

A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.

Keywords: Bit-wise compression, entropy, file splitting, source mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
9080 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: Automotive industry, Industry 4.0, internet of things, IATF 16949:2016, measurement system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
9079 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Molluca Collision Zone is located at the junction of the Eurasian, Australian, Pacific and the Philippines plates. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. In this research, we used data of shallow earthquakes type and its magnitudes ≥4 SR (period 1964-2013). From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

Keywords: Molluca Collision Zone, partition regions, conventional statistical methods, Earthquakes, classifications, disaster management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
9078 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.

Keywords: Copper prices, prediction model, neural network, time series forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
9077 On Methodologies for Analysing Sickness Absence Data: An Insight into a New Method

Authors: Xiaoshu Lu, Päivi Leino-Arjas, Kustaa Piha, Akseli Aittomäki, Peppiina Saastamoinen, Ossi Rahkonen, Eero Lahelma

Abstract:

Sickness absence represents a major economic and social issue. Analysis of sick leave data is a recurrent challenge to analysts because of the complexity of the data structure which is often time dependent, highly skewed and clumped at zero. Ignoring these features to make statistical inference is likely to be inefficient and misguided. Traditional approaches do not address these problems. In this study, we discuss model methodologies in terms of statistical techniques for addressing the difficulties with sick leave data. We also introduce and demonstrate a new method by performing a longitudinal assessment of long-term absenteeism using a large registration dataset as a working example available from the Helsinki Health Study for municipal employees from Finland during the period of 1990-1999. We present a comparative study on model selection and a critical analysis of the temporal trends, the occurrence and degree of long-term sickness absences among municipal employees. The strengths of this working example include the large sample size over a long follow-up period providing strong evidence in supporting of the new model. Our main goal is to propose a way to select an appropriate model and to introduce a new methodology for analysing sickness absence data as well as to demonstrate model applicability to complicated longitudinal data.

Keywords: Sickness absence, longitudinal data, methodologies, mix-distribution model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
9076 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: Business intelligence, business intelligence capability, decision making, decision quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
9075 Data Oriented Modeling of Uniform Random Variable: Applied Approach

Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mirkamal Mirnia, Mohamad Teshnelab, Ehsan Shahamatnia

Abstract:

In this paper we introduce new data oriented modeling of uniform random variable well-matched with computing systems. Due to this conformity with current computers structure, this modeling will be efficiently used in statistical inference.

Keywords: Uniform random variable, Data oriented modeling, Statistical inference, Prodigraph, Statistically complete tree, Uniformdigital probability digraph, Uniform n-complete probability tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
9074 Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia

Authors: David Calderón Villegas, Thomas Kalitzky

Abstract:

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate. 

Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, financial analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
9073 Analysis of Image Segmentation Techniques for Diagnosis of Dental Caries in X-ray Images

Authors: V. Geetha, K. S. Aprameya

Abstract:

Early diagnosis of dental caries is essential for maintaining dental health. In this paper, method for diagnosis of dental caries is proposed using Laplacian filter, adaptive thresholding, texture analysis and Support Vector Machine (SVM) classifier. Analysis of the proposed method is compared with Otsu thresholding, watershed segmentation and active contouring method. Adaptive thresholding has comparatively better performance with 96.9% accuracy and 96.1% precision. The results are validated using statistical method, two-way ANOVA, at significant level of 5%, that shows the interaction of proposed method on performance parameter measures are significant. Hence the proposed technique could be used for detection of dental caries in automated computer assisted diagnosis system.

Keywords: Computer assisted diagnosis, dental caries, dental radiography, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
9072 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
9071 Students- uses of Wiki in Teacher Education: A Statistical Analysis

Authors: Said Hadjerrouit

Abstract:

Wikis are considered to be part of Web 2.0 technologies that potentially support collaborative learning and writing. Wikis provide opportunities for multiple users to work on the same document simultaneously. Most wikis have also a page for written group discussion. Nevertheless, wikis may be used in different ways depending on the pedagogy being used, and the constraints imposed by the course design. This work explores students- uses of wiki in teacher education. The analysis is based on a taxonomy for classifying students- activities and actions carried out on the wiki. The article also discusses the implications for using wikis as collaborative writing tools in teacher education.

Keywords: Behaviorism, collaborative writing, socioconstructivism, taxonomy, web 2.0 technology, wiki

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
9070 Research on the Problems of Housing Prices in Qingdao from a Macro Perspective

Authors: Liu Zhiyuan, Sun Zongdi, Liu Zhiyuan, Sun Zongdi

Abstract:

Qingdao is a seaside city. Taking into account the characteristics of Qingdao, this article established a multiple linear regression model to analyze the impact of macroeconomic factors on housing prices. We used stepwise regression method to make multiple linear regression analysis, and made statistical analysis of F test values and T test values. According to the analysis results, the model is continuously optimized. Finally, this article obtained the multiple linear regression equation and the influencing factors, and the reliability of the model was verified by F test and T test.

Keywords: Housing prices, multiple linear regression model, macroeconomic factors, Qingdao City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
9069 The Impact of Bus Rapid Transit on Land Development: A Case Study of Beijing, China

Authors: Taotao Deng, John D. Nelson

Abstract:

Bus Rapid Transit (BRT) has emerged as a cost-effective transport system for urban mobility. However its ability to stimulate land development remains largely unexplored. The study makes use of qualitative (interview method) and quantitative analysis (questionnaire survey and longitudinal analysis of property data) to investigate land development impact resulting from BRT in Beijing, China. The empirical analysis suggests that BRT has a positive impact on the residential and commercial property attractiveness along the busway corridor. The statistical analysis suggests that accessibility advantage conferred by BRT is capitalized into higher property price. The average price of apartments adjacent to a BRT station has gained a relatively faster increase than those not served by the BRT system. The capitalization effect mostly occurs after the full operation of BRT, and is more evident over time and particularly observed in areas which previously lack alternative mobility opportunity.

Keywords: accessibility, Bus Rapid Transit (BRT), Beijing, property value uplift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4605
9068 Multidimensional Visualization Tools for Analysis of Expression Data

Authors: Urska Cvek, Marjan Trutschl, Randolph Stone II, Zanobia Syed, John L. Clifford, Anita L. Sabichi

Abstract:

Expression data analysis is based mostly on the statistical approaches that are indispensable for the study of biological systems. Large amounts of multidimensional data resulting from the high-throughput technologies are not completely served by biostatistical techniques and are usually complemented with visual, knowledge discovery and other computational tools. In many cases, in biological systems we only speculate on the processes that are causing the changes, and it is the visual explorative analysis of data during which a hypothesis is formed. We would like to show the usability of multidimensional visualization tools and promote their use in life sciences. We survey and show some of the multidimensional visualization tools in the process of data exploration, such as parallel coordinates and radviz and we extend them by combining them with the self-organizing map algorithm. We use a time course data set of transitional cell carcinoma of the bladder in our examples. Analysis of data with these tools has the potential to uncover additional relationships and non-trivial structures.

Keywords: microarrays, visualization, parallel coordinates, radviz, self-organizing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
9067 Body Mass Index and Dietary Habits among Nursing College Students Living in the University Residence in Kirkuk City, Iraq

Authors: Jenan Shakoor

Abstract:

Obesity prevalence is increasing worldwide. University life is a challenging period especially for students who have to leave their familiar surroundings and settle in a new environment. The current study aimed to assess the diet and exercise habits and their association with body mass index (BMI) among nursing college students living at Kirkuk University residence. This was a descriptive study. A non-probability (purposive) sample of 101 students living in Kirkuk University residence was recruited during the period from the 15th November 2015 to the 5th May 2016. A questionnaire was constructed for the purpose of the study which consisted of four parts: the demographic characteristics of the study sample, eating habits, eating at college and healthy habits. The data were collected by interviewing the study sample and the weight and height were measured by a trained researcher at the college. Descriptive statistical analysis was undertaken. Data were prepared, organized and entered into the computer file; the Statistical Package for Social Science (SPSS 20) was used for data analysis. A p value≤ 0.05 was accepted as statistical significant. A total of 63 (62.4%) of the sample were aged20-21with a mean age of 22.1 (SD±0.653). A third of the sample 38 (37.6%) were from level four at college, 67 (66.3%) were female and 46 45.5% of participants were from a middle socio-economic status. 14 (13.9%) of the study sample were overweight (BMI =25-29.9kg/m2) and 6 (5.9%) were obese (BMI≥30kg/m2) compared to 73 (72.3%) were of normal weight (BMI =18.5-24.9kg/m2). With regard to eating habits and exercise, 42 (41.6%) of the students rarely ate breakfast, 79 (78.2%) eat lunch at university residence, 77 (78.2%) of the students reported rarely doing exercise and 62 (61.4%) of them were sleeping for less than eight hours. No significant association was found between the variables age, sex, level of college and socio-economic status and BMI, while there was a significant association between eating lunch at university and BMI (p =0.03). No significant association was found between eating habits, healthy habits and BMI. The prevalence of overweight and obesity among the study sample was 19.8% with female students being more obese than males. Further studies are needed to identify BMI among residence students in other colleges and increasing the awareness of undergraduate students to healthy food habits.

Keywords: Body mass index, diet, obesity, university residence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
9066 A Development of the Multiple Intelligences Measurement of Elementary Students

Authors: Chaiwat Waree

Abstract:

This research aims at development of the Multiple Intelligences Measurement of Elementary Students. The structural accuracy test and normality establishment are based on the Multiple Intelligences Theory of Gardner. This theory consists of eight aspects namely linguistics, logic and mathematics, visual-spatial relations, body and movement, music, human relations, self-realization/selfunderstanding and nature. The sample used in this research consists of elementary school students (aged between 5-11 years). The size of the sample group was determined by Yamane Table. The group has 2,504 students. Multistage Sampling was used. Basic statistical analysis and construct validity testing were done using confirmatory factor analysis. The research can be summarized as follows; 1. Multiple Intelligences Measurement consisting of 120 items is content-accurate. Internal consistent reliability according to the method of Kuder-Richardson of the whole Multiple Intelligences Measurement equals .91. The difficulty of the measurement test is between .39-.83. Discrimination is between .21-.85. 2). The Multiple Intelligences Measurement has construct validity in a good range, that is 8 components and all 120 test items have statistical significance level at .01. Chi-square value equals 4357.7; p=.00 at the degree of freedom of 244 and Goodness of Fit Index equals 1.00. Adjusted Goodness of Fit Index equals .92. Comparative Fit Index (CFI) equals .68. Root Mean Squared Residual (RMR) equals 0.064 and Root Mean Square Error of Approximation equals 0.82. 3). The normality of the Multiple Intelligences Measurement is categorized into 3 levels. Those with high intelligence are those with percentiles of more than 78. Those with moderate/medium intelligence are those with percentiles between 24 and 77.9. Those with low intelligence are those with percentiles from 23.9 downwards.

Keywords: Multiple Intelligences, Measurement, Elementary Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
9065 Urbanization and Income Inequality in Thailand

Authors: Acumsiri Tantiakrnpanit

Abstract:

This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020, using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for 19 selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.

Keywords: Income inequality, nighttime light, population density, Thailand, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127
9064 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product on Nigeria’s Economy

Authors: K. P. Oyeduntan, K. Oshinubi

Abstract:

Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the sparkplug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria.

Keywords: Economy, GDP, maritime transport, port, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142