Search results for: machining stability
1241 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys
Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge
Abstract:
In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.
Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321240 Computation of Global Voltage Stability Margin in a Practical Power Network Incorporating FACTS in the OPF Frame Work
Authors: P. Nagendra, S. Halder nee Dey, S. Paul, T. Datta
Abstract:
This paper presents a methodology to assess the voltage stability status combined with optimal power flow technique using an instantaneous two-bus equivalent model of power system incorporating static var compensator (SVC) and thyristor controlled series compensator (TCSC) controllers. There by, a generalized global voltage stability indicator being developed has been applied to a robust practical Indian Eastern Grid 203-bus system. Simulation results have proved that the proposed methodology is promising to assess voltage stability of any power system at any operating point in global scenario. Voltage stability augmentation with the application of SVC at the weakest bus and TCSC at critical line connected to the weakest bus is compared with the system having no compensation. In the proposed network equivalent model the generators have been modeled more accurately considering economic criteria.
Keywords: Equivalent two-bus model, global voltage security indicator, optimal power flow, SVC, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461239 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning
Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar
Abstract:
Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.
Keywords: ANOVA, MQL, regression analysis, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4851238 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning
Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar
Abstract:
Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.
Keywords: ANOVA, MQL, regression analysis, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3731237 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses
Abstract:
In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.
Keywords: Almost periodic solution, exponential stability, neural networks, impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143321236 Effect of Ply Orientation on Roughness for the Trimming Process of CFRP Laminates
Authors: Jean François Chatelain, Imed Zaghbani, Joseph Monier
Abstract:
The machining of Carbon Fiber Reinforced Plastics has come to constitute a significant challenge for many fields of industry. The resulting surface finish of machined parts is of primary concern for several reasons, including contact quality and impact on the assembly. Therefore, the characterization and prediction of roughness based on machining parameters are crucial for costeffective operations. In this study, a PCD tool comprised of two straight flutes was used to trim 32-ply carbon fiber laminates in a bid to analyze the effects of the feed rate and the cutting speed on the surface roughness. The results show that while the speed has but a slight impact on the surface finish, the feed rate for its part affects it strongly. A detailed study was also conducted on the effect of fiber orientation on surface roughness, for quasi-isotropic laminates used in aerospace. The resulting roughness profiles for the four-ply orientation lay-up were compared, and it was found that fiber angle is a critical parameter relating to surface roughness. One of the four orientations studied led to very poor surface finishes, and characteristic roughness profiles were identified and found to only relate to the ply orientations of multilayer carbon fiber laminates.Keywords: Roughness, Detouring, Composites, Aerospace
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26961235 Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena
Authors: Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor
Abstract:
In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.
Keywords: Stability analysis, Rotor-rolling bearing systems, Switching systems, Multiple Lyapunov Function Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431234 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay
Authors: Yunquan Ke, Chunfang Miao
Abstract:
In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.
Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311233 A Failure Analysis Tool for HDD Analysis
Authors: C. Kumjeera, T. Unchim, B. Marungsri, A. Oonsivilai
Abstract:
The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.
Keywords: Hard disk drive, failure analysis, tool, time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27501232 Factors Affecting Test Automation Stability and Their Solutions
Authors: Nagmani Lnu
Abstract:
Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of flaky tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for User Interface (UI) behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort.
Keywords: Automation stability, test stability, flaky test, test quality, test automation quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441231 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs
Authors: Kyogun Chang, Yoon Bok Lee
Abstract:
Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111230 Bifurcations for a FitzHugh-Nagumo Model with Time Delays
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, a FitzHugh-Nagumo model with time delays is investigated. The linear stability of the equilibrium and the existence of Hopf bifurcation with delay τ is investigated. By applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Numerical simulations for justifying the theoretical results are illustrated. Finally, main conclusions are given.
Keywords: FitzHugh-Nagumo model, Time delay, Stability, Hopf bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16901229 Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays
Authors: Yongkun Li, Meng Hu
Abstract:
A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.
Keywords: Predator-prey system, stage structure, time delay, HOPF bifurcation, periodic solution, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691228 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.
Keywords: Dual solutions, heat transfer, shrinking sheet, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20171227 A Study on Integrated Performance of Tap-Changing Transformer and SVC in Association with Power System Voltage Stability
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Electricity market activities and a growing demand for electricity have led to heavily stressed power systems. This requires operation of the networks closer to their stability limits. Power system operation is affected by stability related problems, leading to unpredictable system behavior. Voltage stability refers to the ability of a power system to sustain appropriate voltage levels through large and small disturbances. Steady-state voltage stability is concerned with limits on the existence of steady-state operating points for the network. FACTS devices can be utilized to increase the transmission capacity, the stability margin and dynamic behavior or serve to ensure improved power quality. Their main capabilities are reactive power compensation, voltage control and power flow control. Among the FACTS controllers, Static Var Compensator (SVC) provides fast acting dynamic reactive compensation for voltage support during contingency events. In this paper, voltage stability assessment with appropriate representations of tap-changer transformers and SVC is investigated. Integrating both of these devices is the main topic of this paper. Effect of the presence of tap-changing transformers on static VAR compensator controller parameters and ratings necessary to stabilize load voltages at certain values are highlighted. The interrelation between transformer off nominal tap ratios and the SVC controller gains and droop slopes and the SVC rating are found. P-V curves are constructed to calculate loadability margins.
Keywords: SVC, voltage stability, P-V curve, reactive power, tap changing transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30221226 Effect of Aggregate Gradation on Moisture Susceptibility and Creep in HMA
Authors: Haider H. Aodah, Yassir Nashaat A. Kareem, Satish Chandra
Abstract:
The present study explains the effect of aggregate gradation on moisture damage in bituminous mixes. Three types of aggregate gradation and two types of binder; VG-30 and Polymer modified bitumen (PMB-40) are used. Moisture susceptibility tests like retained stability and tensile strength ratio (TSR) and static creep test are conducted on Marshall specimens. The creep test was also conducted for conditioned and unconditioned specimens to observe the effect of moisture on creep behaviour. The results indicate that Marshall stability value is higher in PMB-40 mix than VG-30 mixes. Moisture susceptibility of PMB-40 mixes is low when compared with mix using VG-30. The reduction in retained stability, and indirect tensile strength and increase in creep are evaluated for finer, coarser and normal gradation of aggregate to observe the effect of gradation on moisture susceptibility of mixes. The retained stability is least affected when compared with other moisture susceptibility parametersKeywords: Aggregate gradation, Creep ratio, Retained stability, Stripping, Tensile strength ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30321225 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform
Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.
Abstract:
This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.
Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28471224 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients
Authors: Khaled M. EL-Naggar
Abstract:
Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.Keywords: Optimization, estimation, synchronous, machine, crow search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6651223 Design of Adaptive Controller Based On Lyapunov Stability for a CSTR
Abstract:
Nonlinearity is the inherent characteristics of all the industrial processes. The Classical control approach used for a generation often fails to show better results particularly for non-linear systems and in the systems, whose parameters changes over a period of time for a variety of reasons. Alternatively, adaptive control strategies provide very good performance. The Model Reference Adaptive Control based on Lyapunov stability analysis and classical PI control strategies are designed and evaluated for Continuous Stirred Tank Reactor, which shows appreciable dynamic nonlinear characteristics.
Keywords: Adaptive Control, CSTR, Lyapunov stability, MRAS, PID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44651222 Heuristic Method for Judging the Computational Stability of the Difference Schemes of the Biharmonic Equation
Authors: Guang Zeng, Jin Huang, Zicai Li
Abstract:
In this paper, we research the standard 13-point difference schemes for solving the biharmonic equation. Heuristic method is applied to judging the stability of multi-level difference schemes of the biharmonic equation. It is showed that the standard 13-point difference schemes are stable.
Keywords: Finite-difference equation, computational stability, hirt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591221 A New Stabilizing GPC for Nonminimum Phase LTI Systems Using Time Varying Weighting
Authors: Mahdi Yaghobi, Mohammad Haeri
Abstract:
In this paper, we show that the stability can not be achieved with current stabilizing MPC methods for some unstable processes. Hence we present a new method for stabilizing these processes. The main idea is to use a new time varying weighted cost function for traditional GPC. This stabilizes the closed loop system without adding soft or hard constraint in optimization problem. By studying different examples it is shown that using the proposed method, the closed-loop stability of unstable nonminimum phase process is achieved.Keywords: GPC, Stability, Varying Weighting Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641220 Permanence and Exponential Stability of a Predator-prey Model with HV-Holling Functional Response
Authors: Kai Wang, Yanling Zu
Abstract:
In this paper, a delayed predator-prey system with Hassell-Varley-Holling type functional response is studied. A sufficient criterion for the permanence of the system is presented, and further some sufficient conditions for the global attractivity and exponential stability of the system are established. And an example is to show the feasibility of the results by simulation.
Keywords: Predator-prey system, Hassell-Varley-Holling, delay, permanence, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15831219 Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.
Keywords: Cellular neural networks, exponential stability, time varying delays, partitioned matrices, periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261218 Exponential Stability of Numerical Solutions to Stochastic Age-Dependent Population Equations with Poisson Jumps
Authors: Mao Wei
Abstract:
The main aim of this paper is to investigate the exponential stability of the Euler method for a stochastic age-dependent population equations with Poisson random measures. It is proved that the Euler scheme is exponentially stable in mean square sense. An example is given for illustration.
Keywords: Stochastic age-dependent population equations, poisson random measures, numerical solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13801217 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel
Authors: W. Handoko, F. Pahlevani, V. Sahajwalla
Abstract:
Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.Keywords: High carbon steel, austenite stability, atomic force microscopy, corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13851216 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V
Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo
Abstract:
A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.
Keywords: Impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10191215 Local Stability Analysis of Age Structural Model for Herpes Zoster in Thailand
Authors: P. Pongsumpun
Abstract:
Herpes zoster is a disease that manifests as a dermatological condition. The characteristic of this disease is an irritating skin rash with blisters. This is often limited to one side of body. From the data of Herpes zoster cases in Thailand, we found that age structure effects to the transmission of this disease. In this study, we construct the age structural model of Herpes zoster in Thailand. The local stability analysis of this model is given. The numerical solutions are shown to confirm the analytical results.
Keywords: Age structural model, Herpes zoster, local stability, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15501214 Voltage Stability Investigation of Grid Connected Wind Farm
Authors: Trinh Trong Chuong
Abstract:
At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.Keywords: Wind generator, Voltage stability, grid connected
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36551213 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller
Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil
Abstract:
The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23671212 MATLAB/SIMULINK Based Model of Single- Machine Infinite-Bus with TCSC for Stability Studies and Tuning Employing GA
Authors: Sidhartha Panda, Narayana Prasad Padhy
Abstract:
With constraints on data availability and for study of power system stability it is adequate to model the synchronous generator with field circuit and one equivalent damper on q-axis known as the model 1.1. This paper presents a systematic procedure for modelling and simulation of a single-machine infinite-bus power system installed with a thyristor controlled series compensator (TCSC) where the synchronous generator is represented by model 1.1, so that impact of TCSC on power system stability can be more reasonably evaluated. The model of the example power system is developed using MATLAB/SIMULINK which can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, the parameters of the TCSC controller are optimized using genetic algorithm. The non-linear simulation results are presented to validate the effectiveness of the proposed approach.
Keywords: Genetic algorithm, MATLAB/SIMULINK, modelling and simulation, power system stability, single-machineinfinite-bus power system, thyristor controlled series compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16513