Local Stability Analysis of Age Structural Model for Herpes Zoster in Thailand
Authors: P. Pongsumpun
Abstract:
Herpes zoster is a disease that manifests as a dermatological condition. The characteristic of this disease is an irritating skin rash with blisters. This is often limited to one side of body. From the data of Herpes zoster cases in Thailand, we found that age structure effects to the transmission of this disease. In this study, we construct the age structural model of Herpes zoster in Thailand. The local stability analysis of this model is given. The numerical solutions are shown to confirm the analytical results.
Keywords: Age structural model, Herpes zoster, local stability, Numerical solution.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089267
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553References:
[1] http://en.wikipedia.org/wiki/Herpes_zoster.
[2] https://www.clinicalkey.com/topics/dermatology/herpes-zoster.html.
[3] R. Deshmukh, A. Raut, S. Sonone, S. Pawar, N. Bharude, A. Umarkar, G. Laddha and R. Shimpi, "Herpes zoster(HZ): A Fatal Viral Disease: A comprehensive review”, Int J Phamaceutical,Chemical and Biological Pharmaceutical, Chemical and Biological Sciences ,vol.2(2), pp.138-145, 2012.
[4] RE. Hope-Simpson. The Nature of Herpes Zoster: A Long-Term Study And a New Hypothesis. Proc R Soc Med, vol.58, pp.9-20, 1965.
[5] JR. McDonald, AL. Zeringue, L. Caplan, P. Ranganathan, H. Xian, TE. Burroughs, et al. "Herpes zoster risk factors in a national cohort of veterans with rheumatoid arthritis”, Clin Infect Dis, vol.48,pp.1364-1371, 2009.
[6] P. Pongsumpun and I. M. Tang, "Effect of the seasonal variation in the extrinsic incubation period on the long term behaviour of the dengue hemorrhagic fever epidemic”, International Journal of Biological and Medical Sciences, vol.3(3), pp.208-214, 2008.
[7] R. Kongnuy and P. Pongsumpun, "Mathematical modeling for dengue transmission with the effect of season”, International Journal of Biological and Medical Sciences, vol.5(2), pp.74-78,2010.
[8] R. Ross, The Prevention of Malaria, John Murray, London, 1911.
[9] K. Dietz, L. Molineaux and A. Thomas, "A Maralia model tested in the African savannah”, Bulletin of world health organization, vol.50, pp. 347-357, 1974.
[10] J. L. Aron, "Mathematical modeling of immunity to malaria,” Mathematical Biosciences, vol.90, pp.385- 396, 1988.
[11] J. LA Salle and S. Lefschetz, Stability by Liapunov’s direct method. New York Academic Press, 1961.
[12] L. Esteva and C. Vargas, "Analysis of a dengue disease transmission model”, Mathematical Biosciences, vol. 152, pp.132-151, 1998
[13] L. Esteva and C. Vargas C, "A model for dengue disease with variable human population” J Mathe Biol, vol.38, pp.220-240, 1999.
[14] P. Pongsumpun and I. M. Tang, "Effect of the seasonal variation in the extrinsic incubation period on the long term behaviour of the dengue hemorrhagic fever epidemic”, Int J Biol and Med Sciences, vol. 3(3), pp. 208-214, 2008.
[15] R. Kongnuy and P. Pongsumpun, "Mathematical modeling for dengue transmission with the effect of season”, Int J Biol and Med Sciences, vol.5 (2), pp.74-78, 2010.