Search results for: compressible Navier- Stokes equations
1100 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux
Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19171099 Influence of a Pulsatile Electroosmotic Flow on the Dispersivity of a Non-Reactive Solute through a Microcapillary
Authors: Jaime Muñoz, José Arcos, Oscar Bautista Federico Méndez
Abstract:
The influence of a pulsatile electroosmotic flow (PEOF) at the rate of spread, or dispersivity, for a non-reactive solute released in a microcapillary with slippage at the boundary wall (modeled by the Navier-slip condition) is theoretically analyzed. Based on the flow velocity field developed under such conditions, the present study implements an analytical scheme of scaling known as the Theory of Homogenization, in order to obtain a mathematical expression for the dispersivity, valid at a large time scale where the initial transients have vanished and the solute spreads under the Taylor dispersion influence. Our results show the dispersivity is a function of a slip coefficient, the amplitude of the imposed electric field, the Debye length and the angular Reynolds number, highlighting the importance of the latter as an enhancement/detrimental factor on the dispersivity, which allows to promote the PEOF as a strong candidate for chemical species separation at lab-on-a-chip devices.Keywords: Dispersivity, microcapillary, Navier-slip condition, pulsatile electroosmotic flow, Taylor dispersion, Theory of Homogenization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6441098 Projective Synchronization of a Class of Fractional-Order Chaotic Systems
Authors: Zahra Yaghoubi, Nooshin Bigdeli, Karim Afshar
Abstract:
This paper at first presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. After that a drive-response synchronization method with linear output error feedback is presented for “generalized projective synchronization" for a class of fractional-order chaotic systems via a scalar transmitted signal. Genesio_Tesi and Duffing systems are used to illustrate the effectiveness of the proposed synchronization method. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18111097 Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space
Authors: Lv Yuhua
Abstract:
In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results (see[5,6]), and the results is new even in finite dimensional spaces.
Keywords: Systems of integro-differential equations, monotone iterative method, comparison result, cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14991096 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations
Authors: Davod Khojasteh Salkuyeh
Abstract:
An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.
Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621095 Very-high-Precision Normalized Eigenfunctions for a Class of Schrödinger Type Equations
Authors: Amna Noreen , Kare Olaussen
Abstract:
We demonstrate that it is possible to compute wave function normalization constants for a class of Schr¨odinger type equations by an algorithm which scales linearly (in the number of eigenfunction evaluations) with the desired precision P in decimals.
Keywords: Eigenvalue problems, bound states, trapezoidal rule, poisson resummation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28531094 Laplace Decomposition Approximation Solution for a System of Multi-Pantograph Equations
Authors: M. A. Koroma, C. Zhan, A. F. Kamara, A. B. Sesay
Abstract:
In this work we adopt a combination of Laplace transform and the decomposition method to find numerical solutions of a system of multi-pantograph equations. The procedure leads to a rapid convergence of the series to the exact solution after computing a few terms. The effectiveness of the method is demonstrated in some examples by obtaining the exact solution and in others by computing the absolute error which decreases as the number of terms of the series increases.
Keywords: Laplace decomposition, pantograph equations, exact solution, numerical solution, approximate solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491093 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method
Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin
Abstract:
This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.
Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19291092 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping
Authors: Da-Xue Chen, Guang-Hui Liu
Abstract:
In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.
Keywords: Oscillation theorem, second-order nonlinear neutral dynamic equation, variable delay, damping, Riccati transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13641091 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries
Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini
Abstract:
A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.
Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091090 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory
Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov
Abstract:
The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.Keywords: Arbitrary cross section waveguide, analytical regularization method, evolutionary equations of electromagnetic theory of time-domain, TM field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721089 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields
Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul
Abstract:
The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32421088 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB
Authors: Deepak Kumar, Vivek Kumar, V. P. Singh
Abstract:
This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32571087 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces
Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid
Abstract:
We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.Keywords: Run-up waves, Shallow water equations, finite volume method, wet/dry interface, dam-break problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7091086 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations
Authors: Jinfeng Wang, Yang Liu, Hong Li
Abstract:
In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.
Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21371085 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching
Authors: Dezhi Liu Guiyuan Yang Wei Zhang
Abstract:
Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12871084 Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis
Authors: Diego Garijo
Abstract:
A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.
Keywords: Bernstein polynomials, Galerkin, differential equation, boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421083 Effect of Inertia on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation
Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski
Abstract:
The dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. In this study, the fractal dimension of the line is found for different cases of heavy particles inertia (different Stokes numbers) in the absence of the particle gravity with a comparison with the fractal dimension obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle inertia affect the fractal dimension of a line released in a turbulent flow for Stokes numbers 0.02 < St < 2. At the beginning for small times, most of the different cases are not affected by the inertia until a certain time, the particle response time τa, with larger time as the particles inertia increases, the fractal dimension of the line increases owing to the particles becoming more sensitive to the small scales which cause the change in the line shape during its journey.Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12611082 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations
Authors: Sara Barati, Karim Ivaz
Abstract:
In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.
Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771081 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method
Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei
Abstract:
As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191080 Nonlinear Simulation of Harmonically Coupled Two-Beam Free-Electron Laser
Authors: M. Zahedian, B. Maraghechi, M. H. Rouhani
Abstract:
A nonlinear model of two-beam free-electron laser (FEL) in the absence of slippage is presented. The two beams are assumed to be cold with different energies and the fundamental resonance of the higher energy beam is at the third harmonic of lower energy beam. By using Maxwell-s equations and full Lorentz force equations of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth order Runge–Kutta method. In this method a considerable growth of third harmonic electromagnetic field in the XUV and X-ray regions is predicted.Keywords: Free-electron laser, Higher energy beam, Lowerenergy beam, Two-beam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13451079 Exact Three-wave Solutions for High Nonlinear Form of Benjamin-Bona-Mahony-Burgers Equations
Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi
Abstract:
By means of the idea of three-wave method, we obtain some analytic solutions for high nonlinear form of Benjamin-Bona- Mahony-Burgers (shortly BBMB) equations in its bilinear form.
Keywords: Benjamin-Bona-Mahony-Burgers equations, Hirota's bilinear form, three-wave method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761078 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations
Authors: Abdu Masanawa Sagir
Abstract:
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19491077 Solving SPDEs by a Least Squares Method
Authors: Hassan Manouzi
Abstract:
We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.
Keywords: Least squares, Wick product, SPDEs, finite element, Wiener chaos expansion, gradient method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011076 Dynamic Behavior of Brain Tissue under Transient Loading
Authors: Y. J. Zhou, G. Lu
Abstract:
In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.
Keywords: Analytical method, mechanical responses, spherical wave propagation, traumatic brain injury.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22611075 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations
Authors: E. Aruchunan, J. Sulaiman
Abstract:
The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151074 Development Partitioning Intervalwise Block Method for Solving Ordinary Differential Equations
Authors: K.H.Khairul Anuar, K.I.Othman, F.Ishak, Z.B.Ibrahim, Z.Majid
Abstract:
Solving Ordinary Differential Equations (ODEs) by using Partitioning Block Intervalwise (PBI) technique is our aim in this paper. The PBI technique is based on Block Adams Method and Backward Differentiation Formula (BDF). Block Adams Method only use the simple iteration for solving while BDF requires Newtonlike iteration involving Jacobian matrix of ODEs which consumes a considerable amount of computational effort. Therefore, PBI is developed in order to reduce the cost of iteration within acceptable maximum errorKeywords: Adam Block Method, BDF, Ordinary Differential Equations, Partitioning Block Intervalwise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691073 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model
Authors: Vladislav N. Dumachev, Vladimir A. Rodin
Abstract:
By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractalsKeywords: bifurcation, chaos, dynamics of populations, fractals
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12761072 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.
Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27561071 Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism
Authors: Seul-Kee Kim, Chi-Seung Lee, Myung-Hyun Kim, Jae-Myung Lee
Abstract:
In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.Keywords: Hydrogen-enhanced localized plasticity (HELP), Hydrogen embrittlement, Hydrogen transport analysis, ABAQUS UMAT, Finite element method (FEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426