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Abstract—The influence of a pulsatile electroosmotic flow (PEOF)
at the rate of spread, or dispersivity, for a non-reactive solute released
in a microcapillary with slippage at the boundary wall (modeled by
the Navier-slip condition) is theoretically analyzed. Based on the flow
velocity field developed under such conditions, the present study
implements an analytical scheme of scaling known as the Theory
of Homogenization, in order to obtain a mathematical expression for
the dispersivity, valid at a large time scale where the initial transients
have vanished and the solute spreads under the Taylor dispersion
influence. Our results show the dispersivity is a function of a slip
coefficient, the amplitude of the imposed electric field, the Debye
length and the angular Reynolds number, highlighting the importance
of the latter as an enhancement/detrimental factor on the dispersivity,
which allows to promote the PEOF as a strong candidate for chemical
species separation at lab-on-a-chip devices.

Keywords—Dispersivity, microcapillary, Navier-slip condition,
pulsatile electroosmotic flow, Taylor dispersion, Theory of
Homogenization.

I. INTRODUCTION

S INCE the classical work developed by Taylor [14] in the

decade of 1950, which delivered the first description of

the dispersivity as an enhanced diffusion process in the flow

direction caused by the combined actions of axial convection

and transversal diffusion across a tube, Taylor’s dispersion

theory has become fundamental at many studies related to the

transport, separation and mixing of species with physiological,

environmental or chemical applications.

In recent years, the dispersion mechanism has been of

great relevance at transport processes for chemical species

that govern the performance of labs-on-a-chip (LOCs) [1], [5],

[12], [18], where the AC electroosmotic flow phenomenon

(AC-driven EOF), by the other hand, has proven to be

a valuable electrokinetic mechanism for mixing [13] and

separation of mass species [7] due to the strong dependence

among the oscillation frequency of the imposed electric

field, the Debye length and the dispersivity. Until recently,

the research work focused on the EOF dispersion has

begun to consider the notable influence of the Navier-slip
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boundary condition [18], [21], which is capable of a

notable enhancement at the electroosmotic velocity i.e., the

Helmholtz-Smoluchowski velocity [15].

Despite the relevance of the AC-driven EOF referred above,

the current EOF’s dispersion studies including slippage at

the wall assume a DC electric field [18], [21], so our

study takes advantage of a particular AC-driven EOF: the

pulsatile electroosmotic flow (PEOF), as an important mean

for electroosmotic mass flow control and enhancement [4],

[11], [19], [20], [22], in order to determine the dispersivity

of a periodic PEOF with slippage at the wall, showing that

such effects must be taken into consideration at for chemical

species separation processes, one of the major fluidic issues

to be performed on LOCs.

II. PROBLEM FORMULATION

A schematic of the physical model under study is presented

in Fig. 1. The dispersion of a non-reactive solute band along

a microcapillary induced by a PEOF is considered. The

radius is a, and its length is L. We define an aspect ratio,

β = a/L � 1, that will be useful for our mathematical

modeling. The electrical double layer (EDL) formed in the

inner wall is quantified by the Debye length (λD) [8]. The

PEOF is induced by applying a pulsating electric field, which

dimensionless form is assumed to be,

Ex(t) = 1 + ξIm [
eit

]
, (1)

where ω is the angular frequency, ξ is the amplitude of

the electric field, i =
√−1, Im [F ] is the imaginary part

of the complex quantity F and t is a dimensionless time

normalized respect 1/ω. The resulting unidirectional periodic

velocity field has been previously derived by Rojas et al. [11]

considering slippage, in an dimensionless form as u(r, t) =
us (r) + Im [

uω(r)e
it
]
, where us (r) and uω (r) are the

steady and oscillatory components of the velocity profile,

respectively, they are defined as follows:

us (r) = 1− I0(κr)

I0(κ)
+ κδ

I1(κ)

I0(κ)
, (2)

and

uω (r) =
ξκ2

(
κ2 + iRω

)
(κ4 +R2

ω) I0(κ)
× (3)[

[I0(κ) + δκI1(κ)] I0(
√
iRωr)

I0(
√
iRω) + δ

√
iRωI1(

√
iRω)

− I0(κr)

]
,
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Fig. 1 Schematic diagram for a non-reactive solute under Taylor dispersion

with κ being the dimensionless electrokinetic parameter (κ =
a/λD), Rω is the angular Reynolds number [10], δ is the slip

coefficient (defined as δ = λN/a, with λN being the Navier

length [6]). I0 and I1 are the zeroth- and first-order modified

Bessel functions of the first kind, respectively.

Our objective is to analyze the transport of a neutral

solute injected across the microcapillary at a large time

scale, where the solute is axially propagated by the Taylor

dispersion, this implies that the solute does not axially

spread as fast as it would propagate radially, then we have

a multiscale phenomenon with three time scales: a2/D
for the transversal diffusion, L/uHS for the convection

along L and L2/D for the diffusion along L, with uHS

and D being the Helmholtz-Smoluchowski velocity and

the molecular diffusion, respectively. We commence our

analysis by considering the dimensionless convection-diffusion

equation that governs the behavior of a solute in an isotropic

medium, which is given by:

∂C

∂t
+ βPe u(r, t)

∂C

∂x
= β2 ∂

2C

∂x2
+

1

r

∂

∂r

(
r
∂C

∂r

)
(4)

with
∂C

∂r
= 0 at r = 0, 1. (5)

The dimensionless concentration distribution is C = C̄/CR,

where CR is a reference concentration. x = x̄/L, t = t̄D/a2

(please note that the quantities C̄, x̄ and t̄ have physical

units), also Pe = uHSa/D is the Péclet number [10], which

is assumed to be of O(1). Next, we use the Homogenization

Method [2], [16], [17] (an spatio-temporal averaging technique

widely applied at multiscale phenomena analysis), in order

to obtain a mathematical definition of the dispersivity, the

detailed implementation of such technique is presented at

Appendix A, here we summarize only its most relevant results:

• A set of ordinary differential equations named canonical
cell problems:

1

r

d

dr

(
r
dBs

dr

)
= ũs(r), (6)

with
dBs

dr
= 0 at r = 0, 1, (7)

and
1

r

d

dr

(
r
dBω

dr

)
− iBω = uω(r), (8)

with

with
dBω

dr
= 0 at r = 0, 1, (9)

where ũs = us(r) − 〈us(r)〉, with 〈us(r)〉 being the mean

velocity of us, defined as 2
∫ 1

0
rusdr. Also, Bs and Bω are

functions of κ and Rω , developed mainly as mathematical

tools in order to calculate the dispersivity.

• A transport equation valid at the large time scale where

the dispersion takes place:

∂C0

∂t2
=

[
1 + Pe2 (Ds +Dω)

] ∂2C0

∂x2
, (10)

where C0 is the leading order of C, as it has been considered in

a form of perturbation series: C = C0+βC1+β2C2 , also, t2 is

a longitudinal diffusion time, with Ds and Dω being the steady

and oscillatory components of the dispersivity, respectively.

The effective dispersion coefficient or dispersivity is denoted

by D, with D = Ds +Dω .

•A mathematical definition of the dispersivity, D,

D = −
{
〈ũsBs〉+ 1

2
Re〈uωB

∗
ω〉

}
, (11)

with Ds = −〈ũsBs〉, and Dω = − 1
2Re〈uωB

∗
ω〉. The brackets

〈 〉 represent a cross-sectional averaging procedure over the

capillary transverse direction. Also, Re [F ] is the real part of

the complex quantity F and B∗
ω is the complex conjugate of

Bω .

III. SOLUTION METHODOLOGY

By solving the boundary value problems (6) and (8), taking

into account their corresponding boundary conditions and the

PEOF velocity field (2)-(3), we have obtained a solution for

Bs and Bω , which are defined by,

Bs =
1

κ2I0(κ)

[
1− I0(κr) +

1

2
κr2I1(κ) +

(
8− κ2

)
I1(κ)− 4κ

4κ

]
(12)

Bω =
ξΓ1

2(κ2 − i)(iRω − i)J1(i3/2)

{√
2κ(1 + i)(iRω − i)I1(κ)J0(i

3/2r)

−
√
2(1 + i)Γ2(κ

2 − i)
√

iRωI1(
√

iRω)J0(i
3/2r)

− 2iJ1(i
3/2)

[
(−1 +Rω)I0(κr) + Γ2(1 + iκ2)I0(

√
iRωr)

]}
,

(13)

where J0 and J1 are the zeroth- and first-order Bessel function

of the first kind, respectively. The functions Γ1 and Γ2 are

explicitly shown at Appendix B.

Subsequently, (12) and (13) are substituted at (11) in order

to obtain an explicit definition for D in terms of the parameters

which control the PEOF hydrodynamic (κ, δ, Rω , ξ). The

stationary component Ds is given by,

Ds = − 1

κ2I20 (κ)

[
I20 (κ)−

(
3

2
+

8

κ2

)
I21 (κ) +

2

κ
I0(κ)I1(κ)

]
.

(14)
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By the other hand, the oscillatory component of the

dispersivity is given by,

Dω = −1

2
ξ2 Re

{
Γ1Γ

∗
1

∑8
j=1 Πj(Rω, κ, δ)

(κ2 + i)(−iRω + i)J1

(
−1−i√

2

)
}
, (15)

where Γ∗
1 is the complex conjugate of Γ1. Eq (15) has a

singularity at Rω = 1, thus, by applying the L’Hopital rule

we solve for Dω as Rω → 1, obtaining,

lim
Rω→1

Dω = −1

2
ξ2 Re

{
7∑

j=1

Ψj(κ, δ)

}
. (16)

Thus, D is defined by the sum of (14) and (15) for all Rω > 0,

except at Rω = 1, where it is defined by the sum of (14) and

(16). The functions Πj(Rω, κ, δ) and Ψj(κ, δ) at (15) and (16),

respectively, are completely defined at Appendix B.

IV. RESULTS AND DISCUSSION

Our analytical expressions for the effective dispersivity

(D = Ds + Dω) have been derived as functions of the

main parameters that control PEOF’s hydrodynamics; in

order to evaluate D for mass separation species, a suitable

combination of values regarding the physical parameters used

in experimental conditions [3], [9] was selected. Firstly, the

expression Rω = Ω/Sc is substituted at (15) and (16), where

Ω = a2ω/D represents a dimensionless frequency referred

to the transverse mass diffusion time a2/D and Sc = ν/D
is the Schmidt number [8], which relates the time scale of

the species diffusion to that of the viscous diffusion, then D
is evaluated at different Sc. Considering a fixed kinematic

viscosity for the carrier (water, ∼ O(10−6) m2s−1), typical

mass diffusivities of solutes in water, D ∼ O(10−8 − 10−9)
m2s−1, in conjunction with typical radii (10 ≤ a ≤ 100
μm), then it is proposed three Sc values: Sc = 100, 500,

2000, that describe different diffusive properties of three

solutes. As ω must be kept below 1MHz in order to avoid

kinematic instability [9], then the range 102 ≤ Ω ≤ 105 is

considered in order to evaluate the dimensionless frequency

dependency. Regarding the slip coefficient, a value δ = 0.1,

reported by experimental evidence [3], is considered; also,

our analysis considers an electric field amplitude fixed at

ξ = 1.0 with λD � a, in view of the latter condition, an

EDL thickness with κ = 100 is proposed. Curves D vs Ω
under all the circumstances referred above are shown at Fig.

2, such figure shows that D becomes increasingly constant

from Ω ∼ O(102) to Ω ∼ O(103) as Sc → 2000, and

then evolves reaching a maximum value. Also, the molecular

diffusion D or the Sc number does not exert any influence on

the maxima of D, however they determine the frequency Ω
at which such maxima are achieved. Regardless the presence

or not of slippage, for each Sc curve there is a specific range

of frequencies where its dispersivity values are significantly

larger than the others Sc curves; e.g., at Fig. 2 (b), with

Ω ≈ 1×103, 6×103 and 2.5×104, three different solutes with

Sc = 100, 500 and 2000 provide the same maxima, however,

as such maxima has been reached at different frequencies,

three different regions around such frequencies are formed in

102 103 104 105

4

3

2

1

0

(a)

102 103 104 105
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(b)

Fig. 2 Effective dispersivity D vs Ω for various Sc values (Sc = 100, 500,
2000), with κ = 100, ξ = 1 and two cases: (a) δ = 0 and (b) δ = 0.1. The

points where Sc = Ω (or, equivalently, Rω = 1) were calculated
considering (16) for the component Dω

which a solute has a significantly large D in comparison the

others Sc curves, this behavior favors the separation of solutes

with different diffusive properties under a PEOF condition.

The change in the dominance of the dispersivity of

one substance over another is determined by cross-over

frequencies. Fig. 2 (b) shows that, when the slippage is present

with δ = 0.1 and κ = 100, the dispersivity D can be enhanced

up to two orders of magnitude respect the no-slip case (δ = 0)

depicted at Fig. 2 (a).

V. CONCLUSION

There exists a strong coupling between the PEOF

hydrodynamics and the rate of spread of a non-reactive

immersed solute, in this context Rω(or Ω) is a parameter

that allows controlling D, which results fundamental in order

to properly separate chemical species immersed in such flow

condition, as for certain values of this parameter, conditions

have been found where there is a maximum of D or a

detrimental behavior of it. Quantitative surprises have emerged

from this study, as a slip condition with δ = 0.1 enhances D up

to two orders of magnitude respect the no-slip condition, with

ξ being fixed and κ 
 1, thus, the slippage at the boundary

wall determines how efficiently the mass species separation
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will be done and cannot be neglected at PEOF’s micro-scale

context.

APPENDIX

A. Homogenization Method

This appendix shows the development of the

homogenization technique which has been made possible to

derive a mathematical expression for the dispersivity of a

non-reactive solute immersed in a PEOF with slippage at the

boundary wall, presented at Section II.

Let’s start by considering (4) which governs the transport

of the solute under the PEOF condition:

∂C

∂t
+βPe u(r, t)

∂C

∂x
= β2 ∂

2C

∂x2
+
1

r

∂

∂r

(
r
∂C

∂r

)
; 0 < r < 1

(17)

As it was exposed at Section II, there exist different

time scales associated with the solute propagation along the

microcapillary, which describe the transversal diffusion time

along a (a2/D), the convective time along L (L/uHS) and

the longitudinal diffusion time along L (L2/D), therefore,

by introducing the following three time dimensionless

coordinates:

t0 = t, t1 = βt and t2 = β2t, (18)

and proposing the perturbation series for the dimensionless

concentration,

C = C0 + βC1 + β2C2 + ..., (19)

into (17), and after collecting terms of like powers in β, the

following set of equations is obtained:

• the O (
β0

)
problem

At this order, the governing equation is given by,

1

r

∂

∂r

(
r
∂C0

∂r

)
= 0, (20)

subject to the boundary conditions,

∂C0

∂r
= 0 at r = 0, 1. (21)

Here, we have neglected the shortest time dependence for

C0 because we focus on the long behavior after the periodicity

is completed. Accordingly, C0 does not depend on r, and it is

of the form,

C0 = C0 (x, t1, t2) . (22)

• the O (β) problem

The dimensionless convection-diffusion equation for C1 is

governed by the following problem:

∂C1

∂t0
+
∂C0

∂t1
+Pe

{
us + Im [

uωeit0
]} ∂C0

∂x
=

1

r

∂

∂r

(
r
∂C1

∂r

)
(23)

with the following boundary conditions,

∂C1

∂r
= 0, at r = 0, 1. (24)

• the O (
β2

)
problem

At this order, C2 is governed by,

∂C2

∂t0
+

∂C1

∂t1
+

∂C0

∂t2
+ Pe

{
us + Im [

uωeit0
]} ∂C1

∂x
=

∂2C0

∂x2
+

1

r

∂

∂r

(
r
∂C2

∂r

)
, (25)

with the boundary conditions,

∂C2

∂r
= 0; r = 0,1 (26)

Considering that our interest is after the transients have died

out, i.e., the periodic response, the time average during one

period of oscillation of any function f is defined as, f̂ =
1
2π

∫ 2π

0
f dt0.

Therefore, time-averaging (23) and (24) yields the

following:

∂C0

∂t1
+ Pe us

∂C0

∂x
=

1

r

∂

∂r

(
r
∂Ĉ1

∂r

)
(27)

with the following boundary conditions,

∂Ĉ1

∂r
= 0, at r = 0, 1. (28)

The development of (27) continues. By defining the area

average of a dimensionless quantity f as 〈f〉 = 2
∫ 1

0
rfdr,

the cross-sectional average of (27) is given by,

∂C0

∂t1
+ Pe 〈us〉∂C0

∂x
= 0. (29)

Equation (29) stablishes that at the time scale t1 the solute is

convected by the PEOF. Subsequently, we subtract (29) from

(23), thereby obtaining,

∂C1

∂t0
+ Pe

{
ũs + Im [

uωeit0
]} ∂C0

∂x
=

1

r

∂

∂r

(
r
∂C1

∂r

)
,

(30)

where ũs represents the deviation of the dimensionless velocity

from its corresponding mean velocity, i.e., ũs(r) = us(r) −
〈us(r)〉.

Considering the linearity of (30), we can assume a solution

for the variable C1 as,

C1 = Pe
∂C0

∂x

{
Bs(r) + Im [

Bω(r) e
it0

]}
. (31)

Substituting (31) into (30) yields,

Im (
i Bωe

it0
)
+

[
ũs(r) + Im (

uωe
it0

)]
=

1

r

d

dr

(
r
dBs

dr

)
+ Im

[
1

r

d

dr

(
r
dBω

dr

)
eit0

]
. (32)

Bs and Bω are two functions which depend on the solutions

of two boundary value problems, called canonical cell
problems, such problems can been derived directly from (32)

in conjuction with the boundary condition (24), and by solving

them, it will be possible to obtain a constitutive relation for the

dispersivity. Thus, the cell problems for the steady component

Bs and for the oscillatory component Bω are defined by,

1

r

d

dr

(
r
dBs

dr

)
= ũs(r) (33)
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with the boundary conditions,

dBs

dr
= 0, at r = 0, 1. (34)

For the oscillatory component Bω we have,

1

r

d

dr

(
r
dBω

dr

)
− i Bω = uω(r), (35)

with the boundary conditions,

dBω

dr
= 0, at r = 0, 1. (36)

After defining these two cell problems, we continue

developing (25), which corresponds to the O(ε2) problem,

to obtain the dimensionless dispersivity coefficient D for the

PEOF with slippage at the microcapillary wall. Substituting

the definition of ũs, provided above, in conjunction with (31)

into (25) leads to:

Pe2
∂2C0

∂x2

[
ũs + 〈us〉+ Im (

uωeit0
) ]× [

Bs + Im (
Bωeit0

) ]
+
∂C2

∂t0
+

∂C1

∂t1
+

∂C0

∂t2
=

∂2C0

∂x2
+

1

r

∂

∂r

(
r
∂C2

∂r

)
. (37)

Taking (22), (29) and (31) into account, a useful expression

for ∂C1/∂t1 is as follows:

∂C1

∂t1
= −Pe2 〈us〉∂

2C0

∂x2

[
Bs + Im (

Bωeit0
)]

. (38)

Introducing (38) into (37) leads to:

Pe2
∂2C0

∂x2

[
ũs + Im (

uωeit0
)]× [

Bs + Im (
Bωeit0

)]
+

∂C2

∂t0
+

∂C0

∂t2
=

∂2C0

∂x2
+

1

r

∂

∂r

(
r
∂C2

∂r

)
. (39)

We now take the time average over a period regarding the

shortest time scale, t0, of (39). Special attention must be placed

on the product
[
ũs + Im (

uωeit0
)] × [

Bs + Im (
Bωeit0

)]
at the moment to obtain its short-time average, as it can be

demonstrated that the period average of the product of the two

harmonic functions η = Im (
uωeit0

)
and τ = Im (

Bωeit0
)

is given by η̂τ = (1/2)Re(uωB
∗
ω), where Re[F ] represents

the real part of the complex quantity F and B∗
ω is the complex

conjugate of Bω . Thus, a differential equation for Ĉ2 is

obtained in the form,

Pe2
∂2C0

∂x2

[
ũsBs +

1

2
Re (uωB

∗
ω)

]
+

∂C0

∂t2
=

∂2C0

∂x2
+

1

r

∂

∂r

(
r
∂Ĉ2

∂r

)
, (40)

with the boundary conditions,

∂Ĉ2

∂r
= 0, at r = 0, 1. (41)

Subsequently, we obtain the cross-sectionally averaged form

of (40), which is defined as,

∂C0

∂t2
=

[
1 + Pe2 (Ds +Dω)

] ∂2C0

∂x2
. (42)

Equation (42) stablishes that at the long time scale t2 the

solute is transported by a combination of convective and radial

diffusion propagation mechanisms known as Taylor dispersion.

Here, the constitutive coefficient 1 + Pe2 (Ds +Dω) is

sometimes referred as the effective diffusivity, denoted by E,

and D = Ds + Dω is the dimensionless effective dispersion

coefficient or dispersivity, which is composed of two parts:

a steady dispersion coefficient that depends on the deviation

from the mean velocity, Ds = −〈ũsBs〉, and a oscillatory

coefficient that depends on the periodic component of the

velocity field, Dω = − 1
2Re〈uωB

∗
ω〉. Therefore, the effective

dispersivity is defined by,

D = −
{
〈ŨsBs〉+ 1

2
Re〈UωB

∗
ω〉

}
. (43)

B. Function Components for the Oscillatory Dispersivity,
Dω

The parameters appearing at (12) and (13) are given by:

Γ1 =
κ2

(
κ2 + iRω

)
(κ4 +R2

ω) I0(κ)
(44)

and

Γ2 =
I0(κ) + δκI1(κ)

I0(
√
iRω) + δ

√
iRωI1(

√
iRω)

. (45)

The complex conjugates of such functions are defined by

Γ∗
1 and Γ∗

2 which are as follows,

Γ∗
1 =

κ2
(
κ2 − iRω

)
(κ4 +R2

ω) I0(κ)
(46)

and

Γ∗
2 =

I0(κ) + δκI1(κ)

I0

(
1−i√

2

√
Rω

)
+ 1−i√

2
δ
√
RωI1

(
1−i√

2

√
Rω

) . (47)

Next, the parameters appearing at the general definition of

dispersivity, i.e., (10), are given by:

Π1 =

√
2κ

1 +Rω
(1− i)(1−Rω)I1(κ)Γ2 ×[√

iRω J0

(−1− i√
2

)
I1

(√
iRω

)
+(−1− i√

2

)
J1

(−1− i√
2

)
I0

(√
iRω

)]
(48)

Π2 =
(1− i)2

i(1 +Rω)
(κ2 + i)Γ2Γ

∗
2

√
Rω I1

(
1− i√

2

√
Rω

)
×[√

iRω J0

(−1− i√
2

)
I1

(√
iRω

)
+(−1− i√

2

)
J1

(−1− i√
2

)
I0

(√
iRω

)]
(49)

Π3 =
Γ2(Rω − 1)

κ2 − iRω

[
κII (κ) I0

(√
iRω

)
−√

iRωI0 (κ) I1
(√

iRω

)]
(50)

Π4 = −Γ2Γ∗
2

2iRω

(
1− iκ2

)×[(
1− i√

2

√
Rω

)
I1

(
1− i√

2

√
Rω

)
I0

(√
iRω

)
−

√
iRω I0

(
1− i√

2

√
Rω

)
I1

(√
iRω

)]
(51)
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Π5 =

√
2κ

i+ κ2
(1− i)(i− iRω)I1(κ)×[

κ J0

(−1− i√
2

)
I1 (κ) +

(−1− i√
2

)
J1

(−1− i√
2

)
I0 (κ)

]
(52)

Π6 = Γ∗
2(1− i)2

√
RωI1

(
1− i√

2

√
Rω

)
×[

κ J0

(−1− i√
2

)
I1 (κ) +

(−1− i√
2

)
J1

(−1− i√
2

)
I0 (κ)

]
(53)

Π7 =
Rω − 1

2

[
I20 (κ)− I21 (κ)

]
(54)

Π8 =
Γ∗
2

(
1− iκ2

)
κ2 + iRω

×
[
κ I0

(
1− i√

2

√
Rω

)
I1 (κ)−(

1− i√
2

√
Rω

)
I1

(
1− i√

2

√
Rω

)
I0(κ)

]
(55)

The parameters appearing at (11), which are related with

the value of Dω as Rω → 1 are defined by:

Ψ1 =
(1− i)κ5I1(κ) [I0(κ) + δκI1(κ)]√

2(κ2 + i)J1
(

−1−i√
2

)
I20 (κ)

× (56)

⎡
⎣
√
iI1(

√
i)J0

(
1+i√

2

)
+

(
1+i√

2

)
I0(

√
i)J1

(
1+i√

2

)
i(κ4 + 1)

[
I0

(√
i
)
+ δ

√
iI1

(√
i
)]

⎤
⎦

Ψ2 = −
√
2κ4(1− i)(κ2 + i) [I0 (κ) + δκI1 (κ)]

2

(κ2 + i)J1
(

−1−i√
2

)
I20 (κ)

× (57)

{
Λ2Λ3

Λ1
+

Λ4

Λ1

(
1− i√

2

)
I1

(
1− i√

2

)}

Ψ3 = −2κ4 [I0 (κ) + δκI1 (κ)]

(κ2 + i)I20 (κ)
(58){

κI0(
√
i)I1(κ)− (

√
i)I0(κ)I1(

√
i)

(κ2 − i)(κ4 + 1)
[
I0

(√
i
)
+ δ

√
iI1

(√
i
)]

}

Ψ4 =
κ4 [I0 (κ) + δκI1 (κ)]

2

Λ5I20 (κ)

{
Λ6 + Λ7 + Λ8

}
(59)

Ψ5 = −
√
2κ5(1− i)I1(κ)

(κ4 + 1) (κ2 + i)2 J1
(

−1−i√
2

)
I20 (κ)

× (60)

{
κJ0

(−1− i√
2

)
I1(κ) +

(−1− i√
2

)
J1

(−1− i√
2

)
I0(κ)

}

Ψ6 =
κ4

[
I20 (κ)− I21 (κ)

]
I20 (κ)(κ

2 + i)(κ4 + 1)
(61)

Ψ7 =
κ4 [I0(κ) + δκI1(κ)]

i(κ2 + i)I20 (κ)J1
(

−1−i√
2

) (
Λ10 − Λ11

Λ9

)
(62)

The parameters Λj (j = 1, · · · , 11) through (57)-(62) are

defined through (63)-(73) in the following forms:

Λ1 = 2(κ4 + 1)
[
I0(

√
i) + δ

√
iI1(

√
i)
]

(63)[
I0

(
1− i√

2

)
+ δ

(
1− i√

2

)
I1

(
1− i√

2

)]

Λ2 =
1

2
√
2
(1− i) I1

(
1− i√

2

)
−

[
i

4
I0

(
1− i√

2

)
+ I2

(
1− i√

2

)]
(64)

Λ3 =
√
iI1(

√
i)J0(

√
i) +

√
iI0(

√
i)J1(

√
i) (65)

Λ4 =
iI1(

√
i)J0(

√
i)

2
√
i

+
iJ0(

√
i)

4

[
I0(

√
i) + I2(

√
i)

]
(66)

− 1

2
√
2i

(1− i) I1(
√
i)J1(

√
i)

Λ5 = −(κ4 + 1)
[
I0(

√
i) + δ

√
iI1(

√
i)
]

(67)[
I0

(
1− i√

2

)
+ δ

(
1− i√

2

)
I1

(
1− i√

2

)]

Λ6 = −
√
i

2
I0

(
1− i√

2

)
I1(

√
i) +

[
1− i

2
√
2
I0(

√
i)I1

(
1− i√

2

)]
(68)

Λ7 =

[
−1

2

√
i

2
(1− i) +

1

2
√
2i

(1 + i)

]
I1(

√
i)I1

(
1− i√

2

)
(69)

Λ8 = − i

4

{
I0

(
1− i√

2

)[
I0(

√
i) + I2(

√
i)
]
+

I0(
√
i)

[
I0

(
1− i√

2

)
+ I2

(
1− i√

2

)]}
(70)

Λ9 = −(κ2 + i)2(κ4 + 1)

[
I0

(
1− i√

2

)
+ δ

(
1− i√

2

)
I1

(
1− i√

2

)]
(71)

Λ10 = Θ1

{
1

2
√
2
(1− i) (κ2 + i)I1

(
1− i√

2

)
+

(
1 + i√

2

)
I1

(
1− i√

2

)
− i

4
(κ2 + i)

[
I0

(
1− i√

2

)
+ I2

(
1− i√

2

)]}
(72)

Λ11 = Θ2

{
− 1

2
√
2
(1− i) I0(κ)I1

(
1− i√

2

)
+

κ

2
√
2
(1− i) I1(κ)I1

(
1− i√

2

)
+

i

4
I0(κ)

[
I0

(
1− i√

2

)
+ I2

(
1− i√

2

)]}
. (73)

In (72) and (73), Θ1 and Θ2 have the following forms:

Θ1 =
√
2(1− i)(κ2 + i)× (74)[

κJ0

(−1− i√
2

)
I1(κ) +

(−1− i√
2

)
J1

(−1− i√
2

)
I0(κ)

]

Θ2 = 2i(κ2 + i)(1− iκ2)J1

(−1− i√
2

)
(75)
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