Search results for: Solar Energy.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3048

Search results for: Solar Energy.

2808 Parameters Estimation of Double Diode Solar Cell Model

Authors: M. R. AlRashidi, K. M. El-Naggar, M. F. AlHajri

Abstract:

A new technique based on Pattern search optimization is proposed for estimating different solar cell parameters in this paper. The estimated parameters are the generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor. The proposed approach is tested and validated using double diode model to show its potential. Performance of the developed approach is quite interesting which signifies its potential as a promising estimation tool.

Keywords: Solar Cell, Parameter Estimation, Pattern Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5990
2807 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.

Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128
2806 A Retrospective of Wind Turbine Architectural Integration in the Built Environment

Authors: Stefano Degrassi, Marco Raciti Castelli, Ernesto Benini

Abstract:

Since the European renewable energy directives set the target for 22.1% of electricity generation to be supplied by 2010 [1], there has been increased interest in using green technologies also within the urban enviroment. The most commonly considered installations are solar thermal and solar photovoltaics. Nevertheless, as observed by Bahaj et al. [2], small scale turbines can reduce the built enviroment related CO2 emissions. Thus, in the last few years, an increasing number of manufacturers have developed small wind turbines specifically designed for the built enviroment. The present work focuses on the integration into architectural systems of such installations and presents a survey of successful case studies.

Keywords: Wind turbines, architectural integration, wind resources, urban areas, built enviroment, renewable technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
2805 Estimating Marine Tidal Power Potential in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.

Keywords: Energy data assessment, environmental legislation, renewable energy, tidal-in-stream turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
2804 Connected Objects with Optical Rectenna for Wireless Information Systems

Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli

Abstract:

Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.

Keywords: Antenna, Rectenna, solar cell, 5G, optical RECTENNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
2803 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation

Authors: Radouane Iqdour, Abdelouhab Zeroual

Abstract:

The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.

Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
2802 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System

Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema

Abstract:

Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.

Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
2801 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.

Keywords: Plant fibers, tropical climates, sustainable development, waste reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
2800 Beam and Diffuse Solar Energy in Zarqa City

Authors: Ali M. Jawarneh

Abstract:

Beam and diffuse radiation data are extracted analytically from previous measured data on a horizontal surface in Zarqa city. Moreover, radiation data on a tilted surfaces with different slopes have been derived and analyzed. These data are consisting of of beam contribution, diffuse contribution, and ground reflected contribution radiation. Hourly radiation data for horizontal surface possess the highest radiation values on June, and then the values decay as the slope increases and the sharp decreasing happened for vertical surface. The beam radiation on a horizontal surface owns the highest values comparing to diffuse radiation for all days of June. The total daily radiation on the tilted surface decreases with slopes. The beam radiation data also decays with slopes especially for vertical surface. Diffuse radiation slightly decreases with slopes with sharp decreases for vertical surface. The groundreflected radiation grows with slopes especially for vertical surface. It-s clear that in June the highest harvesting of solar energy occurred for horizontal surface, then the harvesting decreases as the slope increases.

Keywords: Beam and Diffuse Radiation, Zarqa City

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2799 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Authors: Wilfred Fritz

Abstract:

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Keywords: Harmonics, power quality, pulse width modulation, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2798 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: Productivity, efficiency, convective heat coefficient, SSD model, SSDHP model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
2797 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System

Authors: S. Sadhishkumar, T. Balusamy

Abstract:

A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.

Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
2796 Tree Based Decomposition of Sunspot Images

Authors: Hossein Mirzaee, Farhad Besharati

Abstract:

Solar sunspot rotation, latitudinal bands are studied based on intelligent computation methods. A combination of image fusion method with together tree decomposition is used to obtain quantitative values about the latitudes of trajectories on sun surface that sunspots rotate around them. Daily solar images taken with SOlar and Heliospheric (SOHO) satellite are fused for each month separately .The result of fused image is decomposed with Quad Tree decomposition method in order to achieve the precise information about latitudes of sunspot trajectories. Such analysis is useful for gathering information about the regions on sun surface and coordinates in space that is more expose to solar geomagnetic storms, tremendous flares and hot plasma gases permeate interplanetary space and help human to serve their technical systems. Here sunspot images in September, November and October in 2001 are used for studying the magnetic behavior of sun.

Keywords: Quad tree decomposition, sunspot image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
2795 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material.

In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved.

In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: Thermal effect, Conduction, Heat dissipation, Thermal conductivity, Solar cell, PV module, Nodes, 3D-TLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
2794 Optimizing the Components of Grid-Independent Microgrids for Rural Electrification Utilizing Solar Panel and Supercapacitor

Authors: Astiaj Khoramshahi, Hossein Ahmadi Danesh Ashtiani, Ahmad Khoshgard, Hamidreza Damghani, Leila Damghani

Abstract:

Rural electrification rates are generally low in Iran and many parts of the world that lack sustainable renewable energy resources. Many homes are based on polluting solutions such as crude oil and diesel generators for lighting, heating, and charging electrical gadgets. Small-scale portable solar battery packs are accessible to the public; however, they have low capacity and are challenging to be distributed in developing countries. To design a battery-based microgrid power systems, the load profile is one of the key parameters. Additionally, the reliability of the system should be taken into account. A conventional microgrid system can be either AC or coupling DC. Both AC and DC microgrids have advantages and disadvantages depending on their application and can be either connected to the main grid or perform independently. This article proposes a tool for optimal sizing of microgrid-independent systems via respective analysis. To show such an analysis, the type of power generation, number of panels, battery capacity, microgrid size, and group of available consumers should be considered. Therefore, the optimization of different design scenarios is based on number of solar panels and super saving sources, ranges of the depth of discharges, to calculate size and estimate the overall cost. Generally, it is observed that there is an inverse relationship between the depth spectrum of discharge and the solar microgrid costs.

Keywords: Storage, super-storage, grid-independent, economic factors, microgrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316
2793 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.

Keywords: climate change, projections, solar radiation, validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
2792 The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter

Authors: C. Casini, V. Da Deppo, P. Zuppella, P. Chioetto, A. Slemer, F. Frassetto, M. Romoli, F. Landini, M. Pancrazzi, V. Andretta, E. Antonucci, A. Bemporad, M. Casti, Y. De Leo, M. Fabi, S. Fineschi, F. Frassati, C. Grimani, G. Jerse, P. Heinzel, K. Heerlein, A. Liberatore, E. Magli, G. Naletto, G. Nicolini, M.G. Pelizzo, P. Romano, C. Sasso, D. Spadaro, M. Stangalini, T. Straus, R. Susino, L. Teriaca, M. Uslenghi, A. Volpicelli

Abstract:

Solar Orbiter, launched on February 9th 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch.

Keywords: Space instrumentation, Metis, solar coronagraph, flat field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
2791 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Authors: S. Ganesh, J. Janani, G. Besliya Angel

Abstract:

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.

Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5969
2790 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells

Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar

Abstract:

In this research, n-dodecylthiol was added to P3HT/ PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT:PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. 

Keywords: n-dodecylthiol, Congugated PSC, P3HT/PCBM, Polymer Solar Cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
2789 Operating Live E! Digital Meteorological Equipments Using Solar Photovoltaics

Authors: Eiko Takaoka, Ryohei Takahashi, Takashi Toyoda

Abstract:

We installed solar panels and digital meteorological equipments whose electrical power is supplied using PV on July 13, 2011. Then, the relationship between the electric power generation and the irradiation, air temperature, and wind velocity was investigated on a roof at a university. The electrical power generation, irradiation, air temperature, and wind velocity were monitored over two years. By analyzing the measured meteorological data and electric power generation data using PTC, we calculated the size of the solar panel that is most suitable for this system. We also calculated the wasted power generation using PTC with the measured meteorological data obtained in this study. In conclusion, to reduce the "wasted power generation", a smaller-size solar panel is required for stable operation.

Keywords: Digital meteorological equipments, PV, photovoltaic, irradiation, PTC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
2788 Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate

Authors: Farid Vahedi

Abstract:

There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.

Keywords: Double Skin Façade Buildings, Energy Conservation, Renewable Energy, Natural Ventilation, Semi-arid Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
2787 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2786 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: Ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO2/In2O3 bilayer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
2785 Modeling of Silicon Solar Cell with Anti-Reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its performance by improving the optical properties using an anti-reflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various anti-reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF2 coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: Anti-reflecting coating, electrical efficiency, reflectance, solar cell, transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
2784 Design Considerations of PV Water Pumping and Rural Electricity System (2011) in Lower Myanmar

Authors: Nang Saw Yuzana Kya ing, Wunna Swe

Abstract:

Photovoltaic (PV) systems provides a viable means of power generation for applications like powering residential appliances, electrification of villages in rural areas, refrigeration and water pumping. Photovoltaic-power generation is reliable. The operation and maintenance costs are very low. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the solar energy could hopefully become the final solution to its energy supply problem in rural area.

Keywords: Myanmar, Standalone PV Inverter, PV WaterPumping, Design Analysis, Induction Motor Driving System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
2783 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace: Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: Metallurgical grade silicon, solar grade silicon, impurity, refining, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
2782 Renewable Energy Supply Options in Kuwait

Authors: Osamah A. Alsayegh, Fatma A. Fairouz

Abstract:

This paper compares planning results of the electricity and water generation inventory up to year 2030 in the State of Kuwait. Currently, the generation inventory consists of oil and gas fired technologies only. The planning study considers two main cases. The first case, Reference case, examines a generation inventory based on oil and gas fired generation technologies only. The second case examines the inclusion of renewables as part of the generation inventory under two scenarios. In the first scenario, Ref-RE, renewable build-out is based on optimum economic performance of overall generation system. Result shows that the optimum installed renewable capacity with electric energy generation of 11% . In the second scenario, Ref-RE20, the renewable capacity build-out is forced to provide 20% of electric energy by 2030. The respective energy systems costs of Reference, Ref-RE and Ref-RE20 case scenarios reach US dollar 24, 10 and 14 billion annually in 2030.

Keywords: Generation inventory, solar, planning, TIMES, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635
2781 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: Vacuum, thermal, flat-plate solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
2780 Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

Authors: Ljubomir Nikolic, Larisa Trichtchenko

Abstract:

The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation. 

Keywords: Space weather, numerical modeling, coronal field, solar wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
2779 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm

Authors: Mustafa Engin Basoğlu, Bekir Çakır

Abstract:

The most important component affecting the efficiency of photovoltaic power systems are solar panels. In other words, efficiency of these systems are significantly affected due to the being low efficiency of solar panel. Thus, solar panels should be operated under maximum power point conditions through a power converter. In this study, design of boost converter has been carried out with maximum power point tracking (MPPT) algorithm which is incremental conductance (Inc-Cond). By using this algorithm, importance of power converter in MPPT hardware design, impacts of MPPT operation have been shown. It is worth noting that initial operation point is the main criteria for determining the MPPT performance. In addition, it is shown that if value of load resistance is lower than critical value, failure operation is realized. For these analyzes, direct duty control is used for simplifying the control.

Keywords: Boost converter, Incremental Conductance (Inc- Cond), MPPT, Solar panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3653