Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells

Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar

Abstract:

In this research, n-dodecylthiol was added to P3HT/ PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT:PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. 

Keywords: n-dodecylthiol, Congugated PSC, P3HT/PCBM, Polymer Solar Cells.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091892

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559

References:


[1] WanzhuCai, Xiong Gong, Yong Cao, 2010, "Polymer solar cells: Recent development and possible routes for improvement in the performance," Sol. Energy Mater. Sol. Cells, 94, pp. 114–127.
[2] Monica Lira-Cantu, Amine Chafiq, Jeremy Faissat, Irene Gonzalez-Valls, Youhai Yu, 2011, "Oxide / polymer interfaces for hybrid and organic solar cells: Anatase vs. RutileTiO2," Sol. Energy Mater. Sol. Cells, 95, pp. 1362–1374.
[3] Thue T. Larsen-Olsen, Thomas R. Andersen, BirgittaAndreasen, Arvid P.L.B, ottiger, Eva Bundgaard, KionNorrman, Jens W. Andreasen, Mikkel Jorgensen, Frederik C. Krebs, 2012, "Roll-to-roll processed polymer tandem solar cells partially processed from water," Sol. Energy Mater. Sol. Cells, 97, pp. 43–49.
[4] MatthieuManceau, DechanAngmo, Mikkel Jorgensen, Frederik C. Krebs, 2011, "ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules," Organic Electronics, 12, pp. 566–574.
[5] Frederik C. Krebs, 2009, "All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps," Organic Electronics, 10, pp. 761–768.
[6] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, 2005,"Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Adv. Funct. Mater., 15, pp. 1617-1622.
[7] S. A. Choulis, Y. Kim, J. Nelson, and D. D. C. Bradley, M. Giles, M. Shkunov, and I. McCulloch, 2004, "High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene)," Applied Physics Letters, 85, pp. 3890-3892.
[8] Julia Schafferhans, Andreas Baumann, Alexander Wagenpfahl, CarstenDeibel, Vladimir Dyakonov, 2010, "Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance," Organic Electronics, 11, pp. 1693–1700.
[9] Minh Trung Dang, Guillaume Wantz , HabibaBejbouji, Mathieu Urien, Olivier J. Dautel, Laurence Vignau, Lionel Hirsch, 2011, "Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent," Sol. Energy Mater. Sol. Cells, 95, pp. 3408–3418.
[10] Woon-HyukBaek, Hyun Yang, Tae-Sik Yoon, C. J. Kang, Hyun Ho Lee, Yong-Sang Kim, 2009, "Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells," Sol. Energy Mater. Sol. Cells, 93, pp. 1263–1267.
[11] A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, G. Wegner, 2006, "Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene)," Macromolecules, 39, pp. 2162-2171.
[12] Craig H. Peters, I. T. Sachs-Quintana,John P. Kastrop, Serge Beaupre, Mario Leclerc, Michael D. McGehee, 2011, "High efficiency polymer solar cells with Long Operating lifetimes," Advanced Energy Materials, 1, pp. 491–494.
[13] Yanming Sun, Gregory C. Welch, Wei Lin Leong, Christopher J. Takacs, Guillermo C. Bazan, Alan J. Heeger, 2012, "Solution-processed small-molecule solar cells with 6.7% efficiency," Nature Materials, 11, pp. 44–48.
[14] F. Reisdorffer, O. Haas, P. Le Rendu, T.P. Nguyen, 2012, "Co-solvent effects on the morphology of P3HT:PCBM thin films," Synthetic Metals, 161, pp. 2544–2548.
[15] A. Konkin, C. Bounioux, U. Ritter , P. Scharff, E.A. Katz, A. Aganov, G. Gobsch, H. Hoppec, G. Ecke, H.-K. Roth, 2011, "ESR and LESR X-band study of morphology and charge carrier interaction in blended P3HT–SWCNT and P3HT–PCBM–SWCNT solid thin films," Synthetic Metals 161, pp. 2241– 2248.
[16] Sung-Ho Jin, B. Vijaya Kumar Naidu, Han-SooJeon, Sung-Min Park, Jin-Soo Park, Sung Chul Kim, Jae Wook Lee, Yeong-Soon Gal, 2007, "Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system," Sol. Energy Mater. Sol. Cells, 91, pp. 1187–1193.
[17] Jang Jo, Seok-Soon Kim, Seok-In Na, Byung-Kwan Yu and Dong-Yu Kim, 2009, "Time-dependent morphology evolution by annealing processes on polymer:fullerene blend solar cells," Advanced Functional Materials, 19, pp. 866–874.
[18] J. Peet, C. Soci, R.C. Coffin, T.Q. Nguyen, A. Mikhailovsky, D. Moses, G.C. Bazan, 2008, Applied Physics Letters, 89, p. 252105.
[19] A. Pivrikas, P. Stadler, H. Neugebauer, N.S. Sariciftci, 2008, Organic Electronics, 9, p. 775.
[20] J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, G.C. Bazan, A.J. Heeger, 2008, Journal of the American Chemical Society, 130, p. 3619.
[21] Gang Li, Vishal Shrotriya, Yan Yao, Jinsong Huang and Yang Yang, 2007, "Manipulating regioregular poly(3-hexylthiophene) :
[6,6]-phenyl-C61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells,” J. Mater. Chem., 17, pp. 3126–3140.
[22] Jiangang Liu, Shuyan Shao, Hanfu Wang, Kui Zhao, LongjianXue, Xiang Gao, ZhiyuanXie, Yanchun Han, 2010, "The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology," Organic Electronics, 11, pp. 775-783.
[23] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, 2005, Advanced Functional Materials, 15, p. 1193.
[24] Cullity, B. D, 2001, Elements Of X Ray Diffraction, third ed., Prentice Hall, p. 113.
[25] Van Krevelen D. W., 1990, Properties of polymers, third ed., Elsevier Science Publishers, Amsterdam, Oxford, New York.