Search results for: Liquefaction resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 797

Search results for: Liquefaction resistance

557 Effect of Zeolite on the Decomposition Resistance of Organic Matter in Tropical Soils under Global Warming

Authors: Mai Thanh Truc, Masao Yoshida

Abstract:

Global temperature had increased by about 0.5oC over the past century, increasing temperature leads to a loss or a decrease of soil organic matter (SOM). Whereas soil organic matter in many tropical soils is less stable than that of temperate soils, and it will be easily affected by climate change. Therefore, conservation of soil organic matter is urgent issue nowadays. This paper presents the effect of different doses (5%, 15%) of Ca-type zeolite in conjunction with organic manure, applied to soil samples from Philippines, Paraguay and Japan, on the decomposition resistance of soil organic matter under high temperature. Results showed that a remain or slightly increase the C/N ratio of soil. There are an increase in percent of humic acid (PQ) that extracted with Na4P2O7. A decrease of percent of free humus (fH) after incubation was determined. A larger the relative color intensity (RF) value and a lower the color coefficient (6logK) value following increasing zeolite rates leading to a higher degrees of humification. The increase in the aromatic condensation of humic acid (HA) after incubation, as indicates by the decrease of H/C and O/C ratios of HA. This finding indicates that the use of zeolite could be beneficial with respect to SOM conservation under global warming condition.

Keywords: Global warming, Humic substances, Soil organicmatter, Zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
556 Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete

Authors: Fareed Ahmed Memon, Muhd Fadhil Nuruddin, Samuel Demie, Nasir Shafiq

Abstract:

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C.

Keywords: Geopolymer Concrete, Self-compacting Geopolymerconcrete, Compressive strength, Curing time, Curing temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5753
555 Prevalence and Antimicrobial Susceptibility Patterns of Enteric Bacteria Isolated from Water and Fish in Lake Victoria Basin of Western Kenya

Authors: Jackson H. O. Onyuka, Rose Kakai, David M. Onyango, Peter F. Arama, John Gichuki, Ayub V.O. Ofulla

Abstract:

A cross sectional study design and standard microbiological procedures were used to determine the prevalence and antimicrobial susceptibility patterns of Escherichia coli, Salmonella enterica serovar typhimurium and Vibrio cholerae O1 isolated from water and two fish species Rastrineobola argentea and Oreochromis niloticus collected from fish landing beaches and markets in the Lake Victoria Basin of western Kenya. Out of 162 samples analyzed, 133 (82.1%) were contaminated, with S. typhimurium as the most prevalent (49.6%), followed by E. coli (46.6%), and lastly V. cholerae (2.8%). All the bacteria isolates were sensitive to ciprofloxacin. E. coli isolates were resistant to ampicillin, tetracycline, cotrimoxazole, chloramphenical and gentamicin while S. typhimurium isolates exhibited resistance to ampicillin, tetracycline, and cotrimoxazole. The V. cholerae O1 isolates were resistant to tetracycline and ampicillin. The high prevalence of drug resistant enteric bacteria in water and fish from the study region needs public health intervention from the local government.

Keywords: Aquatic environments, Antimicrobial resistance, Enteric bacteria, Lake Victoria Basin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
554 A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator

Authors: A. Leelasantitham, B. Srisuchinwong

Abstract:

A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.

Keywords: Sinusoidal quadrature oscillator, low-pass-filterbased, current-mirror bilinear transfer function, all-current-mirror, negative resistance, low power, high frequency, low distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
553 An Investigation of the Effect of the Different Mix Constituents on Concrete Electric Resistivity

Authors: H. M. Ghasemzadeh, Y. Mohammadi, Gh. Nouri, S. E. Nabavi

Abstract:

Steel corrosion in concrete is considered as a main engineering problems for many countries and lots of expenses has been paid for their repair and maintenance annually. This problem may occur in all engineering structures whether in coastal and offshore or other areas. Hence, concrete structures should be able to withstand corrosion factors existing in water or soil. Reinforcing steel corrosion enhancement can be measured by use of concrete electrical resistance; and maintaining high electric resistivity in concrete is necessary for steel corrosion prevention. Lots of studies devoted to different aspects of the subjects worldwide. In this paper, an evaluation of the effects of W/C ratio, cementitious materials, and percent increase in silica fume were investigated on electric resistivity of high strength concrete. To do that, sixteen mix design with one aggregate grading was planned. Five of them had varying amount of W/C ratio and other eleven mixes was prepared with constant W/C ratio but different amount of cementitious materials. Silica fume and super plasticizer were used with different proportions in all specimens. Specimens were tested after moist curing for 28 days. A total of 80 cube specimens (50 mm) were tested for concrete electrical resistance. Results show that concrete electric resistivity can be increased with increasing amount of cementitious materials and silica fume.

Keywords: Corrosion, Electric resistivity, Mix design, Silica fume

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
552 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and resistance to annealing softening. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: DC plating, internal stress, leveling power, Ni-Mn coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
551 The Appropriateness of Antibiotic Prescribing within Dundee Dental Hospital

Authors: Salma Ainine, Colin Ritchie, Tracey McFee

Abstract:

Background: The societal impact of antibiotic resistance is a major public health concern. The increase in incidence of resistant bacteria can ultimately be fatal. Objective: To analyse the appropriateness of antibiotic prescribing in Dundee Dental Hospital, ultimately improving the safety and quality of patient care. Methods: Two examiners independently crosschecked approximately fifty consecutive prescriptions, and corresponding patient case notes, for three data collection cycles between August 2014 – September 2015. The Scottish Dental Clinical Effectiveness Program (SDCEP) Drug Prescribing for Dentistry guidelines was the standard utilised. The criteria: clinical justification, regime justification and review arrangements was measured, and compared to the standard. Results: Cycle one revealed 42% of antibiotic prescriptions were appropriate. Interventions included: multiple staff meetings, introduction of a checklist attached to the prescription pack, and production of patient leaflets explaining indications for antibiotics. Cycle two and three revealed 44%, and 30% compliance, respectively. Conclusion: The results of the audit have yet to meet target standards set out in prescribing guidelines. However, steps are being taken and change has occurred on a cultural level.

Keywords: Antibiotic resistance, antibiotic stewardship, dental infection and hygiene standards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
550 Antimicrobial Effect of Essential Oil of Plant Schinus molle on Some Bacteria Pathogens

Authors: Mehani M., Segni L.

Abstract:

Humans use plants for thousands of years to treat various ailments, in many developing countries; much of the population relies on traditional doctors and their collections of medicinal plants to cure them.

Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin.

The aim of our study is to determine the antimicrobial effect of essential oils of the plant Schinus molle on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin.

The test adopted, is based on the diffusion method on solid medium (Antibiogram), this method allows to determine the susceptibility or resistance of an organism according to the sample studied.

Our study reveals that the essential oil of the plant Schinus molle has a different effect on the resistance of germs: for Pseudomonas aeruginosa strain is a moderately sensitive with an inhibition zone of 10mm, further Enterobacter, Escherichia coli and Proteus are strains that represent a high sensitivity, a zone of inhibition equal to 14.66 mm.

Keywords: Essential oil, microorganism, antibiogram, Shinus molle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
549 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as ground granulated blast-furnace slag (GGBFS) and limestone to replace Portland cement (PC) is a promising method to reduce the carbon emissions from cement production. To efficiently use GGBFS and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., No.1 fine GGBFS, medium PC, and coarse limestone; No.2 fine limestone, medium PC, and coarse GGBFS; No.3. fine PC, medium GGBFS, and coarse limestone. The binder contents in the ternary cements were 50% PC, 40% slag, and 10% limestone. The mortar performance of the three ternary cements was investigated in terms of flow table value, strength at 28 days, carbonation resistance and non-steady state chloride migration resistance at 28 days. Results show that ternary cement with fine limestone (No.2) has the weakest performance among the three ternary cements. Ternary cements with fine slag (No.1) show an overall comparable performance to ternary cement with fine PC (No.3). Moreover, the chloride migration coefficient of ternary cements with fine slag (No.1) is significantly lower than the other two ternary cements.

Keywords: Limestone, particle size distribution, slag, ternary cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355
548 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: Body composition, diet, exercise, protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
547 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, Gowri Shankar M. C.

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: Hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
546 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion

Authors: L. Mouzai, M. Bouhadef

Abstract:

Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.

Keywords: Flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
545 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings

Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.

Keywords: Corrosion, polyaniline particles, zinc, protective ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
544 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu

Abstract:

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Keywords: Biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
543 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3385
542 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish

Abstract:

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
541 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
540 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.

Keywords: Children, insulin resistance indices, metabolic syndrome, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
539 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement

Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin

Abstract:

An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.

Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
538 Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes

Authors: M. Tarawneh

Abstract:

Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.

Keywords: Two-phase flow, frictional pressure drop, horizontalmicro tube, carbon dioxide, condensers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3365
537 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites through T6 and T8 Heat Treatments

Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.

Abstract:

In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of benefits such as moderate strength; better deforming characteristics and affordable cost. It is expected that substitution of aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminum alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. In addition to Zn, Mg as major alloying additions, Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties by suitable heat treatment process. Subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments; known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. The hardness value may further improve when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. It is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and up to 5 times increase in wear resistance are also observed in the present study.

Keywords: Reinforcement, precipitation, thermomechanical, dislocation, strain hardening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
536 The Acaricidal and Repellent Effect of Cinnamon Essential Oil against House Dust Mite

Authors: Je-Hoon Michael Oh

Abstract:

The major source of allergy in home is the house dust mite (Dematophagoides farina, Dermatophagoides pteronyssinus) causing allergic symptom include atopic dermatitis, asthma, perennial rhinitis and even infant death syndrome. Control of this mite species is dependent on the use of chemical methods such as fumigation treatments with methylene bromide, spraying with organophosphates such as pirimiphos-methyl, or treatments with repellents such as DEET and benzyl benzoate. Although effective, their repeated use for decades has sometimes resulted in development of resistance and fostered environmental and human health concerns. Both decomposing animal parts and the protein that surrounds mite fecal pellets cause mite allergy. So it is more effective to repel than to kill them because allergen is not living house dust mite but dead body or fecal particles of house dust mite. It is important to find out natural repellent material against house dust mite to control them and reduce the allergic reactions. Plants may be an alternative source for dust mite control because they contain a range of bioactive chemicals. The research objectives of this paper were to verify the acaricidal and repellent effects of cinnamon essential oil and to find out it-s most effective concentrations. We could find that cinnamon bark essential oil was very effective material to control the house dust mite. Furthermore, it could reduce chemical resistance and danger for human health.

Keywords: house dust mite, cinnamon, repellent effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4574
535 When Psychology Meets Ecology: Cognitive Flexibility for Quarry Rehabilitation

Authors: J. Fenianos, C. Khater, D. Brouillet

Abstract:

Ecological projects are often faced with reluctance from local communities hosting the project, especially when this project involves variation from preset ideas or classical practices. This paper aims at appreciating the contribution of environmental psychology through cognitive flexibility exercises to improve the acceptability of local communities in adopting more ecological rehabilitation scenarios. The study is based on a quarry site located in Bekaa- Lebanon. Four groups were considered with different levels of involvement, as follows: Group 1 is Training (T) – 50 hours of on-site training over 8 months, Group 2 is Awareness (A) – 2 hours of awareness raising session, Group 3 is Flexibility (F) – 2 hours of flexibility exercises and Group 4 is the Control (C). The results show that individuals in Group 3 (F) who followed flexibility sessions accept comparably the ecological rehabilitation option over the more classical one. This is also the case for the people in Group 1 (T) who followed a more time-demanding “on-site training”. Another experience was conducted on a second quarry site combining flexibility with awareness-raising. This research confirms that it is possible to reduce resistance to change thanks to a limited in-time intervention using cognitive flexibility. This methodological approach could be transferable to other environmental problems involving local communities and changes in preset perceptions.

Keywords: Acceptability, ecological restoration, environmental psychology, Lebanon, local communities, resistance to change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
534 Considering the Effect of Semi-Rigid Connection in Steel Frame Structures for Progressive Collapse

Authors: Fooad Karimi Ghaleh Jough, Mohsen Soori

Abstract:

Today, the occurrence of progressive failure in structures has become a challenging issue, requiring the presentation of suitable solutions for structural resistance to this phenomenon. It is also necessary to evaluate the vulnerability of existing and under-construction buildings to progressive failure. The kind of lateral load-resisting system the building and its connections have is one of the most significant and influential variables in structural resistance to the risk of progressing failure. Using the "Alternative Path" approach suggested by the GSA2003 and UFC2013 recommendations, different configurations of semi-rigid connections against progressive failure are offered in this study. In order to do this, the Opensees program was used to model nine distinct semi-rigid connection configurations on a three-story Special Area of Conservation (SAC) structure, accounting for the impact of connection stiffness. Then, using nonlinear dynamic analysis, the effects of column removal were explored in two scenarios: corner column removal and middle column removal on the first level. Nonlinear static analysis results showed that when a column is removed, structures with semi-rigid connections experience larger displacements, which result in the construction of a plastic hinge. Furthermore, it was clear from the findings of the nonlinear static analysis that the possibility of progressive failure increased with the number of semi-rigid connections in the structure.

Keywords: Semi-rigid, nonlinear static analysis, progressive collapse, alternative path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96
533 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
532 Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete

Authors: M. Fareed Ahmed, M. Fadhil Nuruddin, Nasir Shafiq

Abstract:

Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it and is produced by complete elimination of ordinary Portland cement. This paper documents the assessment of the compressive strength and workability characteristics of low-calcium fly ash based selfcompacting geopolymer concrete. The essential workability properties of the freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and segregation resistance as specified by guidelines on Self Compacting Concrete by EFNARC were satisfied. In addition, compressive strength was determined and the test results are included here. This paper also reports the effect of extra water, curing time and curing temperature on the compressive strength of self-compacting geopolymer concrete. The test results show that extra water in the concrete mix plays a significant role. Also, longer curing time and curing the concrete specimens at higher temperatures will result in higher compressive strength.

Keywords: Fly ash, Geopolymer Concrete, Self-compactingconcrete, Self-compacting Geopolymer concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4584
531 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
530 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, vapor deposition, electrical switching, PCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
529 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: Auxetic fabrics, high performance, composites, impact resistance, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
528 Co-Articulation between Consonant and Vowel in Cantonese Syllables

Authors: Wai-Sum Lee

Abstract:

This study investigates C-V and V-C co-articulation in Cantonese monosyllables of the CV, VC or CVC structure, with C = one of the three stop consonants [p, t, k] and V = one of the three corner vowels [i, a, u]. Five repetitions of each test syllable on a randomized list were elicited from Cantonese young adult speakers in their early-20s. A research tool, EMA AG500, was used to record the synchronized audio signals and articulatory data at three different locations of the tongue – tongue tip, tongue middle, and tongue back – and the positions of the upper and lower lips during the test syllables. The main findings based on the articulatory data collected from two male Cantonese speakers are as follows: (i) For the syllable-initial [p-], strong co-articulation is observed when [p-] preceding the high vowel [i] or [u], but not the low vowel [a]. As for the syllable-final [-p], it is strongly co-articulated with the preceding vowel, even when the vowel is [a]. (ii) The co-articulation between the initial [t-] and the following vowel of any type is weak. In the syllable-final position, the degree of co-articulatory resistance of [-t] is also large when following the vowel [u], but [-t] is largely co-articulated with the preceding vowel when the vowel is [i] or [a]. (iii) The strength of co-articulation differs when the initial [k-] precedes the different types of vowel. A stronger co-articulation between [k-] and [i] than between [k-] and [u], and the strength of co-articulation is much reduced between [k-] and [a]. However, in the syllable-final position, there is strong co-articulation between [-k] and the preceding vowel [a]. (iv) Among the three types of stop consonants in the syllable-initial position, the decreasing degree of co-articulatory resistance (CR) is [t-] > [k-] > [p-], and the degree of CR is reduced during all three types of stop in the syllable-final position. In general, the data on co-articulation between consonant and vowel in the Cantonese monosyllables are similar to those in other languages reported in previous studies.

Keywords: Cantonese, co-articulation, consonant, vowel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122