Search results for: Genetic Programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1282

Search results for: Genetic Programming

1042 A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Authors: D. Vijayakumar, R. K. Nema

Abstract:

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Keywords: Directional over current relays, Optimization techniques, Particle swarm optimization, Power system protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
1041 Genetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines

Authors: A. Perolini

Abstract:

Feature and model selection are in the center of attention of many researches because of their impact on classifiers- performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parameters- values. Although GA-SVM is an effective method it is computationally expensive, thus a rough method can be considered. The paper investigates a joined approach of Genetic Algorithm and kernel matrix criteria to perform simultaneously feature and model selection for SVM classification problem. The purpose of this research is to improve the classification performance of SVM through an efficient approach, the Kernel Matrix Genetic Algorithm method (KMGA).

Keywords: Feature and model selection, Genetic Algorithms, Support Vector Machines, kernel matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
1040 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, ¬G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
1039 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
1038 Multimodal Biometric Authentication Using Choquet Integral and Genetic Algorithm

Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara

Abstract:

The Choquet integral is a tool for the information fusion that is very effective in the case where fuzzy measures associated with it are well chosen. In this paper, we propose a new approach for calculating fuzzy measures associated with the Choquet integral in a context of data fusion in multimodal biometrics. The proposed approach is based on genetic algorithms. It has been validated in two databases: the first base is relative to synthetic scores and the second one is biometrically relating to the face, fingerprint and palmprint. The results achieved attest the robustness of the proposed approach.

Keywords: Multimodal biometrics, data fusion, Choquet integral, fuzzy measures, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
1037 Designing and Implementing a Novel Scheduler for Multiprocessor System using Genetic Algorithm

Authors: Iman Zangeneh, Mostafa Moradi, Mazyar Baranpouyan

Abstract:

System is using multiple processors for computing and information processing, is increasing rapidly speed operation of these systems compared with single processor systems, very significant impact on system performance is increased .important differences to yield a single multi-processor cpu, the scheduling policies, to reduce the implementation time of all processes. Notwithstanding the famous algorithms such as SPT, LPT, LSPT and RLPT for scheduling and there, but none led to the answer are not optimal.In this paper scheduling using genetic algorithms and innovative way to finish the whole process faster that we do and the result compared with three algorithms we mentioned.

Keywords: Multiprocessor system, genetic algorithms, time implementation process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1036 Solution of Fuzzy Maximal Flow Problems Using Fuzzy Linear Programming

Authors: Amit Kumar, Manjot Kaur

Abstract:

In this paper, the fuzzy linear programming formulation of fuzzy maximal flow problems are proposed and on the basis of the proposed formulation a method is proposed to find the fuzzy optimal solution of fuzzy maximal flow problems. In the proposed method all the parameters are represented by triangular fuzzy numbers. By using the proposed method the fuzzy optimal solution of fuzzy maximal flow problems can be easily obtained. To illustrate the proposed method a numerical example is solved and the obtained results are discussed.

Keywords: Fuzzy linear programming, Fuzzy maximal flow problem, Ranking function, Triangular fuzzy number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
1035 The Rank-scaled Mutation Rate for Genetic Algorithms

Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac

Abstract:

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Keywords: Genetic algorithms, mutation rate control, adaptive mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
1034 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat

Abstract:

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1033 Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties

Authors: M. Esmaeeli Shahrakht, A. Kazemi

Abstract:

Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.

Keywords: Load uncertainty, linear programming, scenario generation, unit commitment, wind farm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
1032 Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study

Authors: Khaled M. EL-Naggar, Khaled A. AL-Rumaih

Abstract:

This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.

Keywords: Forecasting, Least error squares, Least absolute Value, Genetic algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
1031 Genetic Algorithm and Padé-Moment Matching for Model Order Reduction

Authors: Shilpi Lavania, Deepak Nagaria

Abstract:

A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.

Keywords: Model Order Reduction (MOR), control theory, Markov parameters, time moments, genetic algorithm, Single Input Single Output (SISO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3498
1030 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.

Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
1029 Modeling and Simulation of Robotic Arm Movement using Soft Computing

Authors: V. K. Banga, Jasjit Kaur, R. Kumar, Y. Singh

Abstract:

In this research paper we have presented control architecture for robotic arm movement and trajectory planning using Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is used to compensate the uncertainties like; movement, friction and settling time in robotic arm movement. The genetic algorithms and fuzzy logic is used to meet the objective of optimal control movement of robotic arm. This proposed technique represents a general model for redundant structures and may extend to other structures. Results show optimal angular movement of joints as result of evolutionary process. This technique has edge over the other techniques as minimum mathematics complexity used.

Keywords: Kinematics, Genetic algorithms (GAs), Fuzzy logic(FL), Optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2966
1028 HaskellFL: A Tool for Detecting Logical Errors in Haskell

Authors: Vanessa Vasconcelos, Mariza A. S. Bigonha

Abstract:

Understanding and using the functional paradigm is a challenge for many programmers. Looking for logical errors in code may take a lot of a developer’s time when a program grows in size. In order to facilitate both processes, this paper presents HaskellFL, a tool that uses fault localization techniques to locate a logical error in Haskell code. The Haskell subset used in this work is sufficiently expressive for those studying Functional Programming to get immediate help debugging their code and to answer questions about key concepts associated with the functional paradigm. HaskellFL was tested against Functional Programming assignments submitted by students enrolled at the Functional Programming class at the Federal University of Minas Gerais and against exercises from the Exercism Haskell track that are publicly available in GitHub. This work also evaluated the effectiveness of two fault localization techniques, Tarantula and Ochiai, in the Haskell context. Furthermore, the EXAM score was chosen to evaluate the tool’s effectiveness, and results showed that HaskellFL reduced the effort needed to locate an error for all tested scenarios. The results also showed that the Ochiai method was more effective than Tarantula.

Keywords: Debug, fault localization, functional programming, Haskell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
1027 Interactive Fuzzy Multi-objective Programming in Land Re-organisational Planning for Sustainable Rural Development

Authors: Bijaya Krushna Mangaraj, Deepak Kumar Das

Abstract:

Sustainability in rural production system can only be achieved if it can suitably satisfy the local requirement as well as the outside demand with the changing time. With the increased pressure from the food sector in a globalised world, the agrarian economy needs to re-organise its cultivable land system to be compatible with new management practices as well as the multiple needs of various stakeholders and the changing resource scenario. An attempt has been made to transform this problem into a multi-objective decisionmaking problem considering various objectives, resource constraints and conditional constraints. An interactive fuzzy multi-objective programming approach has been used for such a purpose taking a case study in Indian context to demonstrate the validity of the method.

Keywords: Land re-organisation, Crop planning, Multiobjective Decision-Making, Fuzzy Goal Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1026 On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

Authors: Job H. Domingo, Carolina Bancayrin-Baguio

Abstract:

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Keywords: Interior point, linear programming, sphere method, initial feasible solution, feasible region, centering and descent steps, optimal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1025 Stochastic Mixed 0-1 Integer Programming Applied to International Transportation Problems under Uncertainty

Authors: Y. Wu

Abstract:

Today-s business has inevitably been set in the global supply chain management environment. International transportation has never played such an important role in the global supply chain network, because movement of shipments from one country to another tends to be more frequent than ever before. This paper studies international transportation problems experienced by an international transportation company. Because of the limited fleet capacity, the transportation company has to hire additional trucks from two countries in advance. However, customer-s shipment information is uncertain, and decisions have to be made before accurate information can be obtained. This paper proposes a stochastic mixed 0-1 programming model to solve the international transportation problems under uncertain demand. A series of experiments demonstrate the effectiveness of the proposed stochastic model.

Keywords: Global supply chain management, international transportation, stochastic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
1024 Facility Location Selection using Preference Programming

Authors: C. Ardil

Abstract:

This paper presents preference programming technique based multiple criteria decision making analysis for selecting a facility location for a new organization or expansion of an existing facility which is of vital importance for a decision support system and strategic planning process. The implementation of decision support systems is considered crucial to sustain competitive advantage and profitability persistence in turbulent environment. As an effective strategic management and decision making is necessary, multiple criteria decision making analysis supports the decision makers to formulate and implement the right strategy. The investment cost associated with acquiring the property and facility construction makes the facility location selection problem a long-term strategic investment decision, which rationalize the best location selection which results in higher economic benefits through increased productivity and optimal distribution network. Selecting the proper facility location from a given set of alternatives is a difficult task, as many potential qualitative and quantitative multiple conflicting criteria are to be considered. This paper solves a facility location selection problem using preference programming, which is an effective multiple criteria decision making analysis tool applied to deal with complex decision problems in the operational research environment. The ranking results of preference programming are compared with WSM, TOPSIS and VIKOR methods.

Keywords: Facility Location Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, Preference Programming, Location Selection, WSM, TOPSIS, VIKOR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
1023 400 kW Six Analytical High Speed Generator Designs for Smart Grid Systems

Authors: A. El Shahat, A. Keyhani, H. El Shewy

Abstract:

High Speed PM Generators driven by micro-turbines are widely used in Smart Grid System. So, this paper proposes comparative study among six classical, optimized and genetic analytical design cases for 400 kW output power at tip speed 200 m/s. These six design trials of High Speed Permanent Magnet Synchronous Generators (HSPMSGs) are: Classical Sizing; Unconstrained optimization for total losses and its minimization; Constrained optimized total mass with bounded constraints are introduced in the problem formulation. Then a genetic algorithm is formulated for obtaining maximum efficiency and minimizing machine size. In the second genetic problem formulation, we attempt to obtain minimum mass, the machine sizing that is constrained by the non-linear constraint function of machine losses. Finally, an optimum torque per ampere genetic sizing is predicted. All results are simulated with MATLAB, Optimization Toolbox and its Genetic Algorithm. Finally, six analytical design examples comparisons are introduced with study of machines waveforms, THD and rotor losses.

Keywords: High Speed, Micro - Turbines, Optimization, PM Generators, Smart Grid, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
1022 Optimal Facility Layout Problem Solution Using Genetic Algorithm

Authors: Maricar G. Misola, Bryan B. Navarro

Abstract:

Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing and service sector. It is an optimization problem on which the main objective is to obtain the efficient locations, arrangement and order of the facilities. In the literature, there are numerous facility layout problem research presented and have used meta-heuristic approaches to achieve optimal facility layout design. This paper presented genetic algorithm to solve facility layout problem; to minimize total cost function. The performance of the proposed approach was verified and compared using problems in the literature.

Keywords: Facility Layout Problem, Genetic Algorithm, Material Handling Cost, Meta-heuristic Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4700
1021 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
1020 Design of Gravity Dam by Genetic Algorithms

Authors: Farzin Salmasi

Abstract:

The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.

Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4299
1019 Metaheuristic Algorithms for Decoding Binary Linear Codes

Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi

Abstract:

This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.

Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
1018 Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm

Authors: B. Jabbari, N. Tahouni, M. H. Panjeshahi

Abstract:

In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.

Keywords: Absorption Heat Pump, Genetic Algorithm, Kraft Industry, Pinch Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1017 Airport Check-In Optimization by IP and Simulation in Combination

Authors: Ahmad Thanyan Al-Sultan

Abstract:

The check-in area of airport terminal is one of the busiest sections at airports at certain periods. The passengers are subjected to queues and delays during the check-in process. These delays and queues are due to constraints in the capacity of service facilities. In this project, the airport terminal is decomposed into several check-in areas. The airport check-in scheduling problem requires both a deterministic (integer programming) and stochastic (simulation) approach. Integer programming formulations are provided to minimize the total number of counters in each check-in area under the realistic constraint that counters for one and the same flight should be adjacent and the desired number of counters remaining in each area should be fixed during check-in operations. By using simulation, the airport system can be modeled to study the effects of various parameters such as number of passengers on a flight and check-in counter opening and closing time.

Keywords: Airport terminal, Integer programming, Scheduling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805
1016 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes

Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.

Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
1015 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Authors: D. Singh, R. Yousefi, M. Boroushaki

Abstract:

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1014 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets

Authors: Satjaporn Tungsong, Gun Srijuntongsiri

Abstract:

This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.

Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
1013 A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

Authors: Cha-Hwa Lin, Je-Wei Hu

Abstract:

The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).

Keywords: Traveling salesman problem, hybrid geneticalgorithm, priority selection, 2-OPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532