Search results for: Clustering coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1368

Search results for: Clustering coefficient

1128 Customer Segmentation Model in E-commerce Using Clustering Techniques and LRFM Model: The Case of Online Stores in Morocco

Authors: Rachid Ait daoud, Abdellah Amine, Belaid Bouikhalene, Rachid Lbibb

Abstract:

Given the increase in the number of e-commerce sites, the number of competitors has become very important. This means that companies have to take appropriate decisions in order to meet the expectations of their customers and satisfy their needs. In this paper, we present a case study of applying LRFM (length, recency, frequency and monetary) model and clustering techniques in the sector of electronic commerce with a view to evaluating customers’ values of the Moroccan e-commerce websites and then developing effective marketing strategies. To achieve these objectives, we adopt LRFM model by applying a two-stage clustering method. In the first stage, the self-organizing maps method is used to determine the best number of clusters and the initial centroid. In the second stage, kmeans method is applied to segment 730 customers into nine clusters according to their L, R, F and M values. The results show that the cluster 6 is the most important cluster because the average values of L, R, F and M are higher than the overall average value. In addition, this study has considered another variable that describes the mode of payment used by customers to improve and strengthen clusters’ analysis. The clusters’ analysis demonstrates that the payment method is one of the key indicators of a new index which allows to assess the level of customers’ confidence in the company's Website.

Keywords: Customer value, LRFM model, Cluster analysis, Self-Organizing Maps method (SOM), K-means algorithm, loyalty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6252
1127 An Experimental Study of the Effect of Coil Step on Heat Transfer Coefficient in Shell- Side of Shell-and-Coil Heat Exchanger

Authors: Mofid Gorji Bandpy, Hasan Sajjadi

Abstract:

In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers and various dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil and the effects of coil pitch on shell-side heat transfer coefficient of the heat exchanger were studied. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that with the increase of coil pitch, shell-side heat transfer coefficient is increased.

Keywords: Coil pitch, Shell-and-Coil heat exchanger, Mixed convection, Experimental investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
1126 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets

Authors: Sotirios Raptis

Abstract:

Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.

Keywords: Probability, cohorts, data frames, services, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
1125 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model

Authors: M.Sujaritha, S. Annadurai

Abstract:

An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.

Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
1124 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient

Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma

Abstract:

One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.

Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250
1123 STATISTICA Software: A State of the Art Review

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, P. Ranjetha

Abstract:

Data mining idea is mounting rapidly in admiration and also in their popularity. The foremost aspire of data mining method is to extract data from a huge data set into several forms that could be comprehended for additional use. The data mining is a technology that contains with rich potential resources which could be supportive for industries and businesses that pay attention to collect the necessary information of the data to discover their customer’s performances. For extracting data there are several methods are available such as Classification, Clustering, Association, Discovering, and Visualization… etc., which has its individual and diverse algorithms towards the effort to fit an appropriate model to the data. STATISTICA mostly deals with excessive groups of data that imposes vast rigorous computational constraints. These results trials challenge cause the emergence of powerful STATISTICA Data Mining technologies. In this survey an overview of the STATISTICA software is illustrated along with their significant features.

Keywords: Data Mining, STATISTICA Data Miner, Text Miner, Enterprise Server, Classification, Association, Clustering, Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
1122 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O

Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli

Abstract:

In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.

Keywords: Absorption refrigeration, COP, ejector, exergy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
1121 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
1120 Design of Coal Quality Disturbance Free System for Coordinated Control System Based on Gain Scheduling

Authors: Liu Ji-Wei, Pei Yu-Liang, Liu Qian, Han Xiang, Zeng De-Liang

Abstract:

The economic and stable operation was affected seriously by coal quality disturbance for power plants. Based on model analysis, influence of the disturbance can be considered as gain change of control system. Power capability coefficient of coal was constructed to inhibit it. Accuracy of the coefficient was verified by operating data. Then coal quality disturbance free system based on gain scheduling was designed for coordinated control system. Simulation showed that, the strategy improved control quality obviously, and inhibited the coal quality disturbance.

Keywords: coordinate control system, coal quality disturbance, energy coefficient of coal quality, gain scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
1119 Behavior of Ice Melting in Natural Convention

Authors: N. Dizadji, P. Entezar

Abstract:

In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too.

Keywords: Nusselt Number, Heat Transfer, Grashof Number, Heat Transfer Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
1118 Object-Based Image Indexing and Retrieval in DCT Domain using Clustering Techniques

Authors: Hossein Nezamabadi-pour, Saeid Saryazdi

Abstract:

In this paper, we present a new and effective image indexing technique that extracts features directly from DCT domain. Our proposed approach is an object-based image indexing. For each block of size 8*8 in DCT domain a feature vector is extracted. Then, feature vectors of all blocks of image using a k-means algorithm is clustered into groups. Each cluster represents a special object of the image. Then we select some clusters that have largest members after clustering. The centroids of the selected clusters are taken as image feature vectors and indexed into the database. Also, we propose an approach for using of proposed image indexing method in automatic image classification. Experimental results on a database of 800 images from 8 semantic groups in automatic image classification are reported.

Keywords: Object-based image retrieval, DCT domain, Image indexing, Image classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
1117 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
1116 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Shunya Wakayama, Kazuya Okubo, Toru Fujii, Daisuke Sakata, Noriyuki Kado, Hiroshi Furutachi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient between shoe rubber soles with added glass fibers and the surfaces of icy and snowy road in order to prevent slip-and-fall accidents by the users. The additional fibers into the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angles were -60, -30, +30, +60, 90 degrees and 0 (as normal specimen), respectively. It was found that parallel arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while perpendicular to normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at critical frictional state and adequate scratching of fibers when fibers were protruded in perpendicular to frictional direction, respectively. Most effective angle of tilting of frictional coefficient between rubber specimens and a stone was perpendicular (= 0 degree) to frictional direction. Combinative modified rubber specimen having 2 layers was fabricated where tilting angle of protruded fibers was 0 degree near the contact surface and tilting angle of embedded fibers was 90 degrees near back surface in thickness direction to further improve the frictional coefficient. Current study suggested that effective arraignments in tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for users in regions of cold climates.

Keywords: Frictional coefficient, icy and snowy road, shoe rubber soles, tilting angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
1115 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.

Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
1114 On the Noise Distance in Robust Fuzzy C-Means

Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.

Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1113 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.

Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
1112 Clustering of Variables Based On a Probabilistic Approach Defined on the Hypersphere

Authors: Paulo Gomes, Adelaide Figueiredo

Abstract:

We consider n individuals described by p standardized variables, represented by points of the surface of the unit hypersphere Sn-1. For a previous choice of n individuals we suppose that the set of observables variables comes from a mixture of bipolar Watson distribution defined on the hypersphere. EM and Dynamic Clusters algorithms are used for identification of such mixture. We obtain estimates of parameters for each Watson component and then a partition of the set of variables into homogeneous groups of variables. Additionally we will present a factor analysis model where unobservable factors are just the maximum likelihood estimators of Watson directional parameters, exactly the first principal component of data matrix associated to each group previously identified. Such alternative model it will yield us to directly interpretable solutions (simple structure), avoiding factors rotations.

Keywords: Dynamic Clusters algorithm, EM algorithm, Factor analysis model, Hierarchical Clustering, Watson distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
1111 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824
1110 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
1109 Fuzzy C-Means Clustering Algorithm for Voltage Stability in Large Power Systems

Authors: Mohamad R. Khaldi, Christine S. Khoury, Guy M. Naim

Abstract:

The steady-state operation of maintaining voltage stability is done by switching various controllers scattered all over the power network. When a contingency occurs, whether forced or unforced, the dispatcher is to alleviate the problem in a minimum time, cost, and effort. Persistent problem may lead to blackout. The dispatcher is to have the appropriate switching of controllers in terms of type, location, and size to remove the contingency and maintain voltage stability. Wrong switching may worsen the problem and that may lead to blackout. This work proposed and used a Fuzzy CMeans Clustering (FCMC) to assist the dispatcher in the decision making. The FCMC is used in the static voltage stability to map instantaneously a contingency to a set of controllers where the types, locations, and amount of switching are induced.

Keywords: Fuzzy logic, Power system control, Reactive power control, Voltage control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
1108 Robust Control Synthesis for an Unmanned Underwater Vehicle

Authors: A. Budiyono

Abstract:

The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.

Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
1107 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

Authors: Pavel Y. Tabakov, Kevin Duffy

Abstract:

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

Keywords: Classification, clustering, data minig, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
1106 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test

Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad

Abstract:

The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7  to 132 , 224 , and 396  in presence of 15 cm, 20 cm, and 30 cm base course, respectively.

Keywords: Base course, calibration chamber, plate load test, loose sand, subgrade reaction coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
1105 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: Clustering, edges, feature points, landmark selection, X-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
1104 Statistical Optimization of the Enzymatic Saccharification of the Oil Palm Empty Fruit Bunches

Authors: Rashid S. S., Alam M. Z.

Abstract:

A statistical optimization of the saccharification process of EFB was studied. The statistical analysis was done by applying faced centered central composite design (FCCCD) under response surface methodology (RSM). In this investigation, EFB dose, enzyme dose and saccharification period was examined, and the maximum 53.45% (w/w) yield of reducing sugar was found with 4% (w/v) of EFB, 10% (v/v) of enzyme after 120 hours of incubation. It can be calculated that the conversion rate of cellulose content of the substrate is more than 75% (w/w) which can be considered as a remarkable achievement. All the variables, linear, quadratic and interaction coefficient, were found to be highly significant, other than two coefficients, one quadratic and another interaction coefficient. The coefficient of determination (R2) is 0.9898 that confirms a satisfactory data and indicated that approximately 98.98% of the variability in the dependent variable, saccharification of EFB, could be explained by this model.

Keywords: Face centered central composite design (FCCCD), Liquid state bioconversion (LSB), Palm oil mill effluent, Trichoderma reesei RUT C-30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
1103 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition

Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi

Abstract:

Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.

Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
1102 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet

Authors: K. Boualem, T. Yahiaoui, A. Azzi

Abstract:

Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.

Keywords: Active control, CFD, NACA airfoil, synthetic jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1101 Tomato Fruit Color Changes During Ripening On Vine

Authors: A. Radzevičius, P. Viškelis, J. Viškelis, R. Karklelienė, D. Juškevičienė

Abstract:

Tomato (Lycopersicon esculentum Mill.) hybrid 'Brooklyn' was investigated at the LRCAF Institute of Horticulture. For investigation, five green tomatoes, which were grown on vine, were selected. Color measurements were made in the greenhouse with the same selected tomato fruits (fruits were not harvested and were growing and ripening on tomato vine through all experiment) in every two days while tomatoes fruits became fully ripen. Study showed that color index L has tendency to decline and established determination coefficient (R2) was 0.9504. Also, hue angle has tendency to decline during tomato fruit ripening on vine and it’s coefficient of determination (R2) reached – 0.9739. Opposite tendency was determined with color index a*, which has tendency to increase during tomato ripening and that was expressed by polynomial trendline where coefficient of determination (R2) reached – 0.9592.

Keywords: Color, color index, ripening, tomato.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4239
1100 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
1099 Queen-bee Algorithm for Energy Efficient Clusters in Wireless Sensor Networks

Authors: Z. Pooranian, A. Barati, A. Movaghar

Abstract:

Wireless sensor networks include small nodes which have sensing ability; calculation and connection extend themselves everywhere soon. Such networks have source limitation on connection, calculation and energy consumption. So, since the nodes have limited energy in sensor networks, the optimized energy consumption in these networks is of more importance and has created many challenges. The previous works have shown that by organizing the network nodes in a number of clusters, the energy consumption could be reduced considerably. So the lifetime of the network would be increased. In this paper, we used the Queen-bee algorithm to create energy efficient clusters in wireless sensor networks. The Queen-bee (QB) is similar to nature in that the queen-bee plays a major role in reproduction process. The QB is simulated with J-sim simulator. The results of the simulation showed that the clustering by the QB algorithm decreases the energy consumption with regard to the other existing algorithms and increases the lifetime of the network.

Keywords: Queen-bee, sensor network, energy efficient, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973