Search results for: Elevated temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2621

Search results for: Elevated temperature

41 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal

Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das

Abstract:

The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.

Keywords: Briquetting reduction, lean grade coal, smelting reduction, TMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
40 Gassing Tendency of Natural Ester Based Transformer Oils: Low Ethane Generation in Stray Gassing Behavior

Authors: Banti Sidhiwala, T. C. S. M. Gupta

Abstract:

Mineral oils of naphthenic and paraffinic type are in use as insulating liquids in the transformer applications to protect solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different types of gases can represent various types of faults that may occur due to faulty components or unfavorable operating conditions. A large amount of database has been generated in the industry for dissolved gas analysis in mineral oil-based transformer oils, and various models have been developed to predict faults and analyze data. Additionally, oil specifications and standards have been updated to include stray gassing limits that cover low-temperature faults. This modification has become an effective preventative maintenance tool that can help greatly in understanding the reasons for breakdowns of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the stray gassing test shows that hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these types of esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a class of natural esters with low levels of stray gassing by American Society for Testing and Materials (ASTM) and International Electric Council (IEC) methods much lower values compared to the natural ester-based products reported in the literature. The experimental results of products are explained.

Keywords: Biodegradability, fire point, dissolved gas analysis, natural ester, stray gassing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210
39 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.

Keywords: Fuzzy time series, neural network, forecasting error, average error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
38 Physiological and Psychological Influence on Office Workers during Demand Response

Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura

Abstract:

In recent years, the power system has been changed and a flexible power pricing system such as demand response has been sought in Japan. The demand response system works simply in the household sector and the owner as the decision-maker, can benefit from power saving. On the other hand, the execution of demand response in the office building is more complex than in the household because various people such as owners, building administrators and occupants are involved in the decision-making process. While the owners benefit from demand saving, the occupants are exposed to restricted benefits of a demand-saved environment. One of the reasons is that building systems are usually under centralized management and each occupant cannot choose freely whether to participate in demand response or not. In addition, it is unclear whether incentives give occupants the motivation to participate. However, the recent development of IT and building systems enables the personalized control of the office environment where each occupant can control the lighting level or temperature individually. Therefore, it can be possible to have a system which each occupant can make a decision of whether or not to participate in demand response in the office building. This study investigates personal responses to demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their desk-lights are automatically turned off. The participation rates in the demand response events are compared among four groups, which are divided by different motivation, the presence, or absence of incentives and the method of participation. The result shows that there are significant differences of participation rates in demand response event between four groups. The method of participation has a large effect on the participation rate. The “Opt-out” groups where the occupants are automatically enrolled in a demand response event if they do not express non-participation have the highest participation rate in the four groups. Incentives also have an effect on the participation rate. This study also reports on the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective fatigue symptoms of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.

Keywords: Demand response, illumination, questionnaire, electrocardiograph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
37 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
36 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova

Abstract:

The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Keywords: Bioregions, ecological monitoring, phytoplankton, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
35 Reconsidering the Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kalangi Rodrigo, Kelum Manamendra-Arachchi

Abstract:

Bones, teeth, and shells have been acknowledged over the last two centuries as evidence of chronology, Palaeo-environment, and human activity. Faunal traces are valid evidence of past situations because they have properties that have not changed over long periods. Sri Lanka has been known as an Island, which has a diverse variety of prehistoric occupation among ecological zones. Defining the Paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site ' Palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5 degrees. Based on Semnopithecus Priam (Gray Langur) remains unearthed from wet zone prehistoric caves, it has been argued periods of momentous climate changes during the Last Glacial Maximum (LGM) and Terminal Pleistocene/Early Holocene boundary, with a recognizable preference for semi-open ‘Intermediate’ rainforest or edges. Continuous genus Acavus and Oligospira occupation along with uninterrupted horizontal pervasive of Canarium sp. (‘kekuna’ nut) have proven that temperatures in the lowland rain forests have not changed by at least 5 °C over the last 50,000 years. Site catchment or territorial analysis cannot be any longer defensible, due to time-distance based factors as well as optimal foraging theory failed as a consequence of prehistoric people were aware of the decrease in cost-benefit ratio and located sites, and generally played out a settlement strategy that minimized the ratio of energy expended to energy produced.

Keywords: Palaeo-environment, palaeo-ecology, palaeo-climate, prehistory, zooarchaeology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
34 Performance Analysis of Polycrystalline and Monocrystalline Solar Module in Dhaka, Bangladesh

Authors: N. J. Imu, N. Rabbani, Md E. Hossain

Abstract:

Achieving national climate goals requires transforming the energy system and increasing the use of renewable energy in Bangladesh as renewable energy offers an environmentally friendly energy supply. In view of this, Bangladesh has set a goal of 100% renewable power generation by 2050. Among all the renewable energy, solar is the most effective and popular source of renewable energy in Bangladesh. In order to build up on-grid and off-grid solar systems to increase energy transformation, monocrystalline type (highly efficient) solar module, and the polycrystalline type (low-efficient) solar module are commonly used. Due to their low price and availability, polycrystalline-type solar modules dominated the local market in the past years. However, in recent times the use of monocrystalline types modules has increased considerably owing to the significant decrease in price difference that existed between these two modules. Despite the deployment of both mono- and poly-crystalline modules in the market, the proliferation of low-quality solar panels are dominating the market resulting in reduced generation of solar electricity than expected. This situation is further aggravated by insufficient information regarding the effect of solar irradiation on solar module performance in relation to the quality of the materials used for the production of the module. This research aims to evaluate the efficiency of monocrystalline and polycrystalline solar modules that are available in Bangladesh by considering seasonal variations. Both types of solar modules have been tested for three different capacities 45W, 60W, and 100W in Dhaka regions to evaluate their power generation capability under Standard Test Conditions (STC). Module testing data were recorded twelve months in a full year from January to December. Data for solar irradiation were collected using HT304N while HT I-V400 multifunction instrument was used for testing voltage and current of photovoltaic (PV) systems and complete power quality analyzer. Results obtained in this study indicated differences between the efficiencies of polycrystalline and monocrystalline solar modules under the country’s solar irradiation. The average efficiencies of 45W, 60W, and 100W monocrystalline solar panels were recorded as 11.73%, 13.41%, and 15.37% respectively while for polycrystalline panels were 8.66%, 9.37%, and 12.34%. Monocrystalline solar panels, which offer greater working output than polycrystalline ones, are also represented by the Pearson Correlation value. The output of polycrystalline solar panels fluctuated highly with the changes in irradiation and temperature whereas monocrystalline panels were much stable.

Keywords: Solar energy, solar irradiation, efficiency, polycrystalline solar module, monocrystalline solar module, SPSS analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
33 Automated, Objective Assessment of Pilot Performance in Simulated Environment

Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt

Abstract:

Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).

Keywords: Automated assessment, flight simulator, human factors, pilot training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
32 A Sustainable Design Approach for Upcycling Waste Glass

Authors: A. Vaidya Soocheta, H Seegolun

Abstract:

Recycled glass surfaces are considered upcycled when they utilize un-melted glass resources. Melted glass uses energy to transform it into a new products or slabs. The present study investigates the use of post-consumer and industrial waste glass such as bottles, jars, and beverage containers to upscale it for making interior slab surfaces. The waste glass was crushed and ground into small particles between 4.75 mm to 150 microns. Two types of solid surfaces were developed using cement and polyester resin. Three types of concrete mix were prepared using 60%, 50%, and 40% crushed glass and cement plus water in the ratio (1:1). The three concrete mix specimens were cast in plywood molds for 24 hours. They were then removed and cured in water at ambient temperature for 24 hours. Similarly, three polyester resin specimens were prepared using 60%, 50%, and 40% crushed glass with a mix of polyester resin, catalyst, and pigment. Formica plywood molds were used to cast the mixes. The specimens were cured for 6 hours. The project further reviews the properties of these upcycled glass, cement, and polyester resin surfaces. Mechanical tests such as density, compressive strength, and flexural and thermal shock were performed. Stain and chemical resistance tests, cigarette burn tests, and solid surface tests such as water absorption, and knife drop tests, were executed. The casted specimens were compared to locally available granite and slab. Specimens of concrete and resin were compared considering the quantity of waste glass used. Cost analysis demonstrates economic benefits. The recycled glass slabs meet high-performance criteria for quality and durability. The waste glass is upcycled into surfaces that exhibit a unique product and provide elegant design solutions for interior surfaces such as table tops, kitchen sinks, bowls, etc. This sustainable approach will provide a path to create new jobs in local communities. The study sets an example that employs waste management, recycling, upcycling, and responsible manufacturing to support the development of new businesses and jobs. It offers an economical and sustainable design solution, increasing the efficient use of waste resources.

Keywords: Create jobs, upcycle waste glass, design solutions, economic benefits, environmental benefits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32
31 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Authors: K. S. Hui, K. N. Hui, Seong Kon Lee

Abstract:

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Keywords: Metal ions, waste water, methane, volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
30 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: Adsorption, Brahea edulis, isotherm, yellow bemacid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
29 Physicochemical and Microbiological Assessment of Source and Stored Domestic Water from Three Local Governments in Ile-Ife, Nigeria

Authors: Mary A. Bisi-Johnson, Kehinde A. Adediran, Saheed A. Akinola, Hamzat A. Oyelade

Abstract:

Some of the main problems man contends with are the quantity (source and amount) and quality of water in Nigeria. Scarcity leads to water being obtained from various sources and microbiological contamination of the water may thus occur between the collection point and the point of usage. This study thus aims to assess the general and microbiological quality of domestic water sources and household stored water used within selected areas in Ile-Ife, South-Western part of Nigeria for microbial contaminants.             Physicochemical and microbiological examination were carried out on 45 source and stored water samples collected from well and spring in three different local government areas i.e. Ife east, Ife-south and Ife-north. Physicochemical analysis included pH value, temperature, total dissolved solid, dissolved oxygen and biochemical oxygen demand. Microbiology involved most probable number analysis, total coliform, heterotrophic plate, faecal coliform and streptococcus count.

The result of the physicochemical analysis of samples showed anomalies compared to acceptable standards with the pH value of 7.20-8.60 for stored and 6.50-7.80 for source samples. The total dissolved solids (TDS of stored 20-70mg/L, source 352-691mg/L), dissolved oxygen (DO of stored 1.60-9.60mg/L, source 1.60-4.80mg/L), biochemical oxygen demand (BOD stored 0.80-3.60mg/L, source 0.60-5.40mg/L). General microbiological quality indicated that both stored and source samples with the exception of a sample were not within acceptable range as indicated by analysis of the MPN/100ml which ranges between (stored 290-1100mg/L, source 9-1100mg/L). Apart from high counts, most samples did not meet the World Health Organization standard for drinking water with the presence of some pathogenic bacteria and fungi such as Salmonella and Aspergillus spp. To annul these constraints, standard treatment methods should be adopted to make water free from contaminants. This will help identify common and likely water related infection origin within the communities and thus help guide in terms of interventions required to prevent the general populace from such infections.

Keywords: Domestic, microbiology, physicochemical, quality, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
28 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: Biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
27 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288
26 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
25 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: Downhole, Teaching Material, Books, Practice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
24 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol

Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher

Abstract:

Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.

Keywords: Antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
23 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol

Authors: H. Nadia, G. Bahdja, S. Thili Malha, Y. Zahoua, D. Taoufik, B. Mourad, M. Marzouk, F. Z. Hadjadj Aoul, L. R. Mekacher

Abstract:

Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of Carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.

Keywords: Antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
22 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel

Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray

Abstract:

The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.

Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
21 The Effects of Human Activity in Yasuj Area on the Health of Stream City

Authors: Jamalodin Alvani, Fardin Boustani, Omid Tabiee, Masoud Hashemi

Abstract:

The Yasuj city stream named the Beshar supply water for different usages such as aquaculture farms , drinking, agricultural and industrial usages. Fish processing plants ,Agricultural farms, waste water of industrial zones and hospitals waste water which they are generate by human activity produce a considerable volume of effluent and when they are released in to the stream they can effect on the water quality and down stream aquatic systems. This study was conducted to evaluate the effects of outflow effluent from different human activity and point and non point pollution sources on the water quality and health of the Beshar river next to Yasuj. Yasuj is the biggest and most important city in the Kohkiloye and Boyerahmad province . The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of human activities on the water quality and health of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. The water samples were analyzed, then some important water quality parameters such as pH, dissolve oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solids (TDS),Turbidity, Temperature, Nitrates (NO3) and Phosphates (PO4) were estimated at the two stations. The results show a downward trend in the water quality at the down stream of the city. The amounts of BOD5,COD,TSS,T,Turbidity, NO3 and PO4 in the down stream stations were considerably more than the station 1. By contrast the amounts of DO in the down stream stations were less than to the station 1. However when effluent discharge consequence of human activities are released into the Beshar river near the city, the quality of river are decreases and the environmental problems of the river during the next years are predicted to rise.

Keywords: Health, Human activities, Water pollution, Yasuj , Iran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
20 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
19 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
18 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: Brine disposal, desalination, field study, inclined dense jets, negatively buoyant discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
17 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and nontoxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75 and 0:100) and fiber content (i.e. in the range of 1-25 %wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: Polylactic acid, Thermoplastic starch, Jute fiber, Composite, Blend.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
16 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
15 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem

Abstract:

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

Keywords: Behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
14 Enhancing Agricultural Sustainability and Food Security in Somalia: Addressing Climate Change Challenges

Authors: Ahmed A. Hassan

Abstract:

The agriculture industry in Somalia employs a large portion of the country's workforce. Somalia has been known for its production and notable agriculture for many years, the key sector that fuels the country's economy. Due to decades of civil conflict, poor administration, neglect, and a string of natural calamities, the Somali agricultural industry has suffered significant damage. The irrigation systems in Juba and Shabelle, the two major rivers, have failed and deteriorated. Crop output has decreased because of ongoing drought, poor agricultural techniques, desertification, and the exodus of rural people to neighboring nations. With pandemic levels of hunger and malnutrition brought on by climate change, Somalia has become one of the world's most food-insecure countries. Additionally, there is strong evidence that climate change, particularly in Somalia and other East African nations, has exacerbated civil wars across Africa. The El Nino/Southern Oscillation, which results in drier and warmer weather in tropical regions, may have contributed to numerous civil wars. Additionally, an increase in temperature is believed to raise the risk of internal armed conflict in sub-Saharan African nations. This paper examines Somalia's present extension programs, lists the challenges the nation's agricultural industry faces, and discusses the effects of climate change. Improvement measures are advised based on the analysis presented in the paper. This article's major goals are to highlight the serious challenges that Somali farmers face and to offer potential solutions for achieving sustainable agriculture and food security through the worst of climate change. Farmers, legislators, decision-makers, and academics may find the material in this article useful in developing credible plans, and policies, and in establishing research and extension programs. With improved extension systems, management, encouraging public investments, and an enabling climate, Somalia's agricultural industry can increase its resilience, the quality of life for its population, and the safety and added value of its goods. Offshore and coastal fisheries can contribute more to sector growth and return to and surpass their amazing pre-war output and export levels.

Keywords: Sustainable agriculture, innovation, land use, climate change, farm management, drought management, resilience, agri-business, agri-extension, farmer field schools, agricultural development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150
13 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, Solder Joint Reliability, NUDD, connectivity issues, qualifications, characterization and control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
12 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: Humic acid, azadirachtin, vermicompost, insect-pest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812