Search results for: real estate market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3038

Search results for: real estate market

488 SIP-Based QoS Management Architecture for IP Multimedia Subsystems over IP Access Networks

Authors: Umber Iqbal, Shaleeza Sohail, Muhammad Younas Javed

Abstract:

True integration of multimedia services over wired or wireless networks increase the productivity and effectiveness in today-s networks. IP Multimedia Subsystems are Next Generation Network architecture to provide the multimedia services over fixed or mobile networks. This paper proposes an extended SIP-based QoS Management architecture for IMS services over underlying IP access networks. To guarantee the end-to-end QoS for IMS services in interconnection backbone, SIP based proxy Modules are introduced to support the QoS provisioning and to reduce the handoff disruption time over IP access networks. In our approach these SIP Modules implement the combination of Diffserv and MPLS QoS mechanisms to assure the guaranteed QoS for real-time multimedia services. To guarantee QoS over access networks, SIP Modules make QoS resource reservations in advance to provide best QoS to IMS users over heterogeneous networks. To obtain more reliable multimedia services, our approach allows the use of SCTP protocol over SIP instead of UDP due to its multi-streaming feature. This architecture enables QoS provisioning for IMS roaming users to differentiate IMS network from other common IP networks for transmission of realtime multimedia services. To validate our approach simulation models are developed on short scale basis. The results show that our approach yields comparable performance for efficient delivery of IMS services over heterogeneous IP access networks.

Keywords: SIP-Based QoS Management Architecture, IPMultimedia Subsystems, IP Access Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
487 The Impact of Culture on Tourists’ Evaluation of Hotel Service Experiences

Authors: Eid Alotaibi

Abstract:

The purpose of this study is to investigate the impact of tourists’ culture on perception and evaluation of hotel service experience and behavioral intentions. Drawing on Hofested’s cultural dimensions, this study seeks to further contribute towards understanding the effect of culture on perception and evaluation of hotels’ services, and whether there are differences between Saudi and European tourists’ perceptions of hotel services evaluation. A descriptive cross-sectional design was used in this study. Data were collected from tourists staying in five-star hotels in Saudi Arabia using the self-completion technique. The findings show that evaluations of hotel services differ from one culture to another. T-test results reveal that Saudis were more tolerant and reported significantly higher levels of satisfaction, were more likely to return and recommend the hotel, and perceived the price for the hotel stay as being good value for money as compared to their European counterparts. The sample was relatively small and specific to only five-star hotel evaluations. As a result, findings cannot be generalized to the wider tourist population. The results of this research have important implications for management within the Saudi hospitality industry. The study contributes to the tourist cultural theory by emphasizing the relative importance of cultural dimensions in-service evaluation. The author argues that no studies could be identified that compare Saudis and Europeans in their evaluations of their experiences staying at hotels. Therefore, the current study would enhance understanding of the effects of cultural factors on service evaluations and provide valuable input for international market segmentation and resource allocation in the Saudi hotel industry.

Keywords: Culture, tourist, service experience, hotel industry, Hofested’s cultural dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
486 A Shift in the Structure of Economy and Synergy of University: Developing Potential through Research and Development Center of SMEs in Jember

Authors: Muhamad Nugraha

Abstract:

Economic growth always correlate positively with the magnitude of the unemployment rate. This is caused by labor which one of important variable to keep growth in the real sector of the region. Meanwhile, the economic structure in districts of Jember showed an increase of economic activity began to shift towards the industrial sector and some other economic sectors, so they have an affects to considerations for policy makers to increase economic growth in Jember as an autonomous region in East Java Province. At the fact, SMEs is among the factors driving economic growth in the region. This is shown by the high amount of SMEs. However, employment in the sector grew slightly slowed. It is caused by a lack of productivity in SMEs. Through the analysis of the transformation of economic structure theory, and the theory of Triple Helix using descriptive analytical method Location Quotient and Shift - Share, found that the results of the economic structure in Jember slowly shifting from the agricultural sector to the industrial sector, because it is dominated by trade sector, hotel and restaurant sector. In addition, SMEs is the potential sector of economic growth in Jember. While to maximizing role and functions of the institution's Research and Development Center of SMEs, there are three points to be known, that are Business Landscape, Business Architecture and Value Added.

Keywords: Economic Growth, SMEs, Labor, Research and Development Center of SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
485 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

Authors: Gaoyong Luo

Abstract:

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
484 Environmental Effects on Energy Consumption of Smart Grid Consumers

Authors: S. M. Ali, A. Salam Khan, A. U. Khan, M. Tariq, M. S. Hussain, B. A. Abbasi, I. Hussain, U. Farid

Abstract:

Environment and surrounding plays a pivotal rule in structuring life-style of the consumers. Living standards intern effect the energy consumption of the consumers. In smart grid paradigm, climate drifts, weather parameter and green environmental directly relates to the energy profiles of the various consumers, such as residential, commercial and industrial. Considering above factors helps policy in shaping utility load curves and optimal management of demand and supply. Thus, there is a pressing need to develop correlation models of load and weather parameters and critical analysis of the factors effecting energy profiles of smart grid consumers. In this paper, we elaborated various environment and weather parameter factors effecting demand of consumers. Moreover, we developed correlation models, such as Pearson, Spearman, and Kendall, an inter-relation between dependent (load) parameter and independent (weather) parameters. Furthermore, we validated our discussion with real-time data of Texas State. The numerical simulations proved the effective relation of climatic drifts with energy consumption of smart grid consumers.

Keywords: Climatic drifts, correlation analysis, energy consumption, smart grid, weather parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
483 Field-Programmable Gate Array Based Tester for Protective Relay

Authors: H. Bentarzi, A. Zitouni

Abstract:

The reliability of the power grid depends on the successful operation of thousands of protective relays. The failure of one relay to operate as intended may lead the entire power grid to blackout. In fact, major power system failures during transient disturbances may be caused by unnecessary protective relay tripping rather than by the failure of a relay to operate. Adequate relay testing provides a first defense against false trips of the relay and hence improves power grid stability and prevents catastrophic bulk power system failures. The goal of this research project is to design and enhance the relay tester using a technology such as Field Programmable Gate Array (FPGA) card NI 7851. A PC based tester framework has been developed using Simulink power system model for generating signals under different conditions (faults or transient disturbances) and LabVIEW for developing the graphical user interface and configuring the FPGA. Besides, the interface system has been developed for outputting and amplifying the signals without distortion. These signals should be like the generated ones by the real power system and large enough for testing the relay’s functionality. The signals generated that have been displayed on the scope are satisfactory. Furthermore, the proposed testing system can be used for improving the performance of protective relay.

Keywords: Amplifier class D, FPGA, protective relay, tester.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
482 A Survey of Key Challenges of Adopting Agile in Global Software Development: A Case Study with Malaysia Perspective

Authors: Amna Batool

Abstract:

Agile methodology is the current most popular technique in software development projects. Agile methods in software development bring optimistic impact on software performances, quality and customer satisfaction. There are some organizations and small-medium enterprises adopting agile into their local software development projects as well as in distributed software development projects. Adopting agile methods in local software development projects is valuable. However, agile global software deployment needs an attention. There are different key challenges in agile global software development that need to resolve and enhance the global software development cycles. The proposed systematic literature review investigates all key challenges of agile in global software development. Moreover, a quantitative methodology (an actual survey) targeted to present a real case scenario of these particular key challenges faced by one of the software houses that is BestWeb Malaysia. The outcomes of systematic literature and the results of quantitative methodology are compared with each other to evaluate if the key challenges pointed out in systematic review still exist. The proposed research and its exploratory results can assist small medium enterprises to avoid these challenges by adopting the best practices in their global software development projects. Moreover, it is helpful for novice researchers to get valuable information altogether.

Keywords: Agile software development, ASD challenges, agile global software development. challenges in agile global software development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956
481 3-D Reconstruction of Objects Using Digital Fringe Projection: Survey and Experimental Study

Authors: R. Talebi, A. Abdel-Dayem, J. Johnson

Abstract:

Three-dimensional reconstruction of small objects has been one of the most challenging problems over the last decade. Computer graphics researchers and photography professionals have been working on improving 3D reconstruction algorithms to fit the high demands of various real life applications. Medical sciences, animation industry, virtual reality, pattern recognition, tourism industry, and reverse engineering are common fields where 3D reconstruction of objects plays a vital role. Both lack of accuracy and high computational cost are the major challenges facing successful 3D reconstruction. Fringe projection has emerged as a promising 3D reconstruction direction that combines low computational cost to both high precision and high resolution. It employs digital projection, structured light systems and phase analysis on fringed pictures. Research studies have shown that the system has acceptable performance, and moreover it is insensitive to ambient light. This paper presents an overview of fringe projection approaches. It also presents an experimental study and implementation of a simple fringe projection system. We tested our system using two objects with different materials and levels of details. Experimental results have shown that, while our system is simple, it produces acceptable results.

Keywords: Digital fringe projection, 3D reconstruction, phase unwrapping, phase shifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5223
480 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

Authors: L. L. Ivy-Yap, H. A. Bekhet

Abstract:

As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationarity of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modelled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.

Keywords: Co-integration, Elasticity, Granger causality, Malaysia, Residential electricity consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4105
479 Load Balancing in Heterogeneous P2P Systems using Mobile Agents

Authors: Neeraj Nehra, R. B. Patel, V. K. Bhat

Abstract:

Use of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile agent technology has proliferated at an equally rapid rate. In this scenario load balancing becomes important for P2P systems. Beside P2P systems can be highly heterogeneous, i.e., they may consists of peers that range from old desktops to powerful servers connected to internet through high-bandwidth lines. There are various loads balancing policies came into picture. Primitive one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive choice; however the communication requirements are sometimes inefficient when implementing the primitives provided by MPI. In this scenario we use the concept of mobile agent because Mobile agent (MA) based approach have the merits of high flexibility, efficiency, low network traffic, less communication latency as well as highly asynchronous. In this study we present decentralized load balancing scheme using mobile agent technology in which when a node is overloaded, task migrates to less utilized nodes so as to share the workload. However, the decision of which nodes receive migrating task is made in real-time by defining certain load balancing policies. These policies are executed on PMADE (A Platform for Mobile Agent Distribution and Execution) in decentralized manner using JuxtaNet and various load balancing metrics are discussed.

Keywords: Mobile Agents, Agent host, Agent Submitter, PMADE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
478 Design and Development of an Efficient and Cost-Effective Microcontroller-Based Irrigation Control System to Enhance Food Security

Authors: Robert A. Sowah, Stephen K. Armoo, Koudjo M. Koumadi, Rockson Agyeman, Seth Y. Fiawoo

Abstract:

The development of the agricultural sector in Ghana has been reliant on the use of irrigation systems to ensure food security. However, the manual operation of these systems has not facilitated their maximum efficiency due to human limitations. This paper seeks to address this problem by designing and implementing an efficient, cost effective automated system which monitors and controls the water flow of irrigation through communication with an authorized operator via text messages. The automatic control component of the system is timer based with an Atmega32 microcontroller and a real time clock from the SM5100B cellular module. For monitoring purposes, the system sends periodic notification of the system on the performance of duty via SMS to the authorized person(s). Moreover, the GSM based Irrigation Monitoring and Control System saves time and labour and reduces cost of operating irrigation systems by saving electricity usage and conserving water. Field tests conducted have proven its operational efficiency and ease of assessment of farm irrigation equipment due to its costeffectiveness and data logging capabilities.

Keywords: Agriculture, control system, data logging, food security, irrigation system, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5215
477 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
476 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub

Abstract:

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5615
475 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
474 A Case Study of Applying Virtual Prototyping in Construction

Authors: Stephen C. W. Kong

Abstract:

The use of 3D computer-aided design (CAD) models to support construction project planning has been increasing in the previous year. 3D CAD models reveal more planning ideas by visually showing the construction site environment in different stages of the construction process. Using 3D CAD models together with scheduling software to prepare construction plan can identify errors in process sequence and spatial arrangement, which is vital to the success of a construction project. A number of 4D (3D plus time) CAD tools has been developed and utilized in different construction projects due to the awareness of their importance. Virtual prototyping extends the idea of 4D CAD by integrating more features for simulating real construction process. Virtual prototyping originates from the manufacturing industry where production of products such as cars and airplanes are virtually simulated in computer before they are built in the factory. Virtual prototyping integrates 3D CAD, simulation engine, analysis tools (like structural analysis and collision detection), and knowledgebase to streamline the whole product design and production process. In this paper, we present the application of a virtual prototyping software which has been used in a few construction projects in Hong Kong to support construction project planning. Specifically, the paper presents an implementation of virtual prototyping in a residential building project in Hong Kong. The applicability, difficulties and benefits of construction virtual prototyping are examined based on this project.

Keywords: construction project planning, prefabrication, simulation, virtual prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
473 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
472 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions

Authors: Jamal S. Yassin

Abstract:

This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.

Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
471 Toward Delegated Democracy: Vote by Yourself, or Trust Your Network

Authors: Hiroshi Yamakawa, Michiko Yoshida, Motohiro Tsuchiya

Abstract:

The recent development of Information and Communication Technology (ICT) enables new ways of "democratic" decision-making such as a page-ranking system, which estimates the importance of a web page based on indirect trust on that page shared by diverse group of unorganized individuals. These kinds of "democracy" have not been acclaimed yet in the world of real politics. On the other hand, a large amount of data about personal relations including trust, norms of reciprocity, and networks of civic engagement has been accumulated in a computer-readable form by computer systems (e.g., social networking systems). We can use these relations as a new type of social capital to construct a new democratic decision-making system based on a delegation network. In this paper, we propose an effective decision-making support system, which is based on empowering someone's vote whom you trust. For this purpose, we propose two new techniques: the first is for estimating entire vote distribution from a small number of votes, and the second is for estimating active voter choice to promote voting using a delegation network. We show that these techniques could increase the voting ratio and credibility of the whole decision by agent-based simulations.

Keywords: Delegation, network centrality, social network, voting ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
470 Analysis of Incidences of Collapsed Buildings in the City of Douala, Cameroon from 2011-2020

Authors: T. G. L. J. Bikoko, J. C. Tchamba, S. Amziane

Abstract:

This study focuses on the problem of collapsed buildings within the city of Douala over the past ten years, and more precisely within the period from 2011 to 2020. It was carried out in a bid to ascertain the real causes of this phenomenon, which has become recurrent in the leading economic city of Cameroon. To achieve this, it was first necessary to review some works dealing with construction materials and technology as well as some case histories of structural collapse within the city. Thereafter, a statistical study was carried out on the results obtained. It was found that the causes of building collapses in the city of Douala are: Neglect of administrative procedures, use of poor quality materials, poor composition and confectioning of concrete, lack of Geotechnical study, lack of structural analysis and design, corrosion of the reinforcement bars, poor maintenance in buildings, and other causes. Out of the 46 cases of failure and collapse of buildings within the city of Douala, 7 of these were identified to have had no geotechnical study carried out, giving a percentage of 15.22%. It was also observed that out of the 46 cases of structural failure, 6 were as a result of lack of proper structural analysis and design giving a percentage of 13.04%. Subsequently, recommendations and suggestions are made in a bid to placing particular emphasis on the choice of materials, the manufacture and casting of concrete as well as the placement of the required reinforcements. All this guarantees the stability of a building.

Keywords: collapse buildings, Douala, structural collapse, Cameroon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
469 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

Authors: S. Khosravi, A. Afshar, F. Barazandeh

Abstract:

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
468 Director Compensation, CEO Duality, State Ownership, and Firm Performance in China: Proof from Panel Data of Publicly Listed Enterprises from 1999 to 2020

Authors: Wanda Luen-Wun Siu, Xiaowen Zhang

Abstract:

This paper offered the primary methodical proof on how director remuneration related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 1999 to 2020 over two decades in the China Stock Market & Accounting Research database, we found statistically significant positive associations between director pay and firm performance in privately owned firms over this period, supporting the agency theory. In contrast, among the state-owned enterprises, there was a reverse relation between director compensation and firm financial performance, contributing to the existing literature. But the results also revealed that state-owned enterprises financially performed as well as private enterprises. Such findings suggested that state ownership might line up officials’ career incentives with party prime concern rather than pecuniary incentives. Also, CEO duality enhanced firm performance. As such, allegiance to the party and possible advancement to an upper-level political position would motivate company directors in state-owned enterprises. On the other hand, directors in privately owned enterprises might be motivated by monetary incentives. In addition, a statistical regression model was proposed and tested to get the results of the performance of state-owned enterprises. Finally, some suggestions were made about how to improve the institutional management of government-owned corporations in China.

Keywords: China’s listed Firm, director compensation, CEO duality, firm performance, panel analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
467 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
466 Subjective Evaluation of Spectral and Time Domain Cascading Algorithm for Speech Enhancement for Mobile Communication

Authors: Harish Chander, Balwinder Singh, Ravinder Khanna

Abstract:

In this paper, we present the comparative subjective analysis of Improved Minima Controlled Recursive Averaging (IMCRA) Algorithm, the Kalman filter and the cascading of IMCRA and Kalman filter algorithms. Performance of speech enhancement algorithms can be predicted in two different ways. One is the objective method of evaluation in which the speech quality parameters are predicted computationally. The second is a subjective listening test in which the processed speech signal is subjected to the listeners who judge the quality of speech on certain parameters. The comparative objective evaluation of these algorithms was analyzed in terms of Global SNR, Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) by the authors and it was reported that with cascaded algorithms there is a substantial increase in objective parameters. Since subjective evaluation is the real test to judge the quality of speech enhancement algorithms, the authenticity of superiority of cascaded algorithms over individual IMCRA and Kalman algorithms is tested through subjective analysis in this paper. The results of subjective listening tests have confirmed that the cascaded algorithms perform better under all types of noise conditions.

Keywords: Speech enhancement, spectral domain, time domain, PESQ, subjective analysis, objective analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
465 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation

Authors: P. D. Pastuszak

Abstract:

The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.

Keywords: Active thermography, finite element analysis, composite, curved structures, defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
464 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model

Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy

Abstract:

A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
463 Data-driven Multiscale Tsallis Complexity: Application to EEG Analysis

Authors: Young-Seok Choi

Abstract:

This work proposes a data-driven multiscale based quantitative measures to reveal the underlying complexity of electroencephalogram (EEG), applying to a rodent model of hypoxic-ischemic brain injury and recovery. Motivated by that real EEG recording is nonlinear and non-stationary over different frequencies or scales, there is a need of more suitable approach over the conventional single scale based tools for analyzing the EEG data. Here, we present a new framework of complexity measures considering changing dynamics over multiple oscillatory scales. The proposed multiscale complexity is obtained by calculating entropies of the probability distributions of the intrinsic mode functions extracted by the empirical mode decomposition (EMD) of EEG. To quantify EEG recording of a rat model of hypoxic-ischemic brain injury following cardiac arrest, the multiscale version of Tsallis entropy is examined. To validate the proposed complexity measure, actual EEG recordings from rats (n=9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Experimental results demonstrate that the use of the multiscale Tsallis entropy leads to better discrimination of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective metric as a prognostic tool.

Keywords: Electroencephalogram (EEG), multiscale complexity, empirical mode decomposition, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
462 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.

Keywords: Copper prices, prediction model, neural network, time series forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192
461 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
460 Asset Management for Educational Buildings in Egypt

Authors: M. Abdelhamid, I. Beshara, M. Ghoneim

Abstract:

In Egypt, the concept of Asset Management (AM) is new; however, the need for applying it has become crucial because deteriorating or losing an asset is unaffordable in a developing country like Egypt. Therefore the current study focuses on educational buildings as one of the most important assets regarding planning, building, operating and maintenance expenditures. The main objective of this study is to develop a SAMF for educational buildings in Egypt. The General Authority for Educational Buildings (GAEB) was chosen as a case study of the current research as it represents the biggest governmental organization responsible for planning, operating and maintaining schools in Egypt. To achieve the research objective, structured interviews were conducted with senior managers of GAEB using a pre designed questionnaire to explore the current practice of AM. Gab analysis technique was applied against best practices compounded from a vast literature review to identify gaps between current practices and the desired one. The previous steps mainly revealed; limited knowledge about strategic asset management, no clear goals, no training, no real risk plan and lack of data, technical and financial resources. Based on the findings, a SAMF for GAEB was introduced and Framework implementation steps and assessment techniques were explained in detail.

Keywords: Strategic Asset Management, Educational Building, Framework, Gab Analysis, Developing Country.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
459 An Efficient Watermarking Method for MP3 Audio Files

Authors: Dimitrios Koukopoulos, Yiannis Stamatiou

Abstract:

In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

Keywords: Audio watermarking, mpeg audio layer 3, hard instance generation, NP-completeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838