Search results for: high data rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13495

Search results for: high data rate

11005 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh

Abstract:

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.

Keywords: Fouling, membrane, polyphenols, ultrafiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3395
11004 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: Distillation, machine learning, neural networks, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
11003 Improving the Performance of Proxy Server by Using Data Mining Technique

Authors: P. Jomsri

Abstract:

Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.

Keywords: Association rule, proxy server, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3069
11002 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis

Authors: Petri Solanti, Russell Klein

Abstract:

Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.

Keywords: Design methodology, high-level synthesis, MATLAB, verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
11001 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
11000 Comparison between Open and Closed System for Dewatering with Geotextile: Field and Comparative Study

Authors: Matheus Müller, Delma Vidal

Abstract:

The present paper aims to expose two techniques of dewatering for sludge, analyzing its operations and dewatering processes, aiming at improving the conditions of disposal of residues with high liquid content. It describes the field tests performed on two geotextile systems, a closed geotextile tube and an open geotextile drying bed, both of which are submitted to two filling cycles. The sludge used in the filling cycles for the field trials is from the water treatment plant of the Technological Center of Aeronautics – CTA, in São José dos Campos, Brazil. Data about volume and height abatement due to the dewatering and consolidation were collected per time, until it was observed constancy. With the laboratory analysis of the sludge allied to the data collected in the field, it was possible to perform a critical comparative study between the observed and the scientific literature, in this way, this paper expresses the data obtained and compares them with the bibliography. The tests were carried out on three fronts: field tests, including the filling cycles of the systems with the sludge from CTA, taking measurements of filling time per cycle and maximum filling height per cycle, heights against the abatement by dewatering of the systems over time; tests carried out in the laboratory, including the characterization of the sludge and removal of material samples from the systems to ascertain the solids content within the systems per time and; comparing the data obtained in the field and laboratory tests with the scientific literature. Through the study, it was possible to perceive that the process of densification of the material inside a closed system, such as the geotextile tube, occurs faster than the observed in the drying bed system. This process of accelerated densification can be brought about by the pumping pressure of the sludge in its filling and by the confinement of the residue through the permeable geotextile membrane (allowing water to pass through), accelerating the process of densification and dewatering by its own weight after the filling with sludge.

Keywords: Consolidation, dewatering, geotextile drying bed, geotextile tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
10999 Performance Analysis of the Subgroup Method for Collective I/O

Authors: Kwangho Cha, Hyeyoung Cho, Sungho Kim

Abstract:

As many scientific applications require large data processing, the importance of parallel I/O has been increasingly recognized. Collective I/O is one of the considerable features of parallel I/O and enables application programmers to easily handle their large data volume. In this paper we measured and analyzed the performance of original collective I/O and the subgroup method, the way of using collective I/O of MPI effectively. From the experimental results, we found that the subgroup method showed good performance with small data size.

Keywords: Collective I/O, MPI, parallel file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
10998 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.

Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330
10997 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should  make strategic decisions to gain sustainable competitive advantage.  Order selection is a crucial issue among these decisions especially for  steel production industry. When the companies allocate a high  proportion of their design and production capacities to their ongoing  projects, determining which customer order should be chosen among  the potential orders without exceeding the remaining capacity is the  major critical problem. In this study, it is aimed to identify and  prioritize the evaluation factors for the customer order selection  problem. Conjoint Analysis is used to examine the importance level  of each factor which is determined as the potential profit rate per unit  of time, the compatibility of potential order with available capacity,  the level of potential future order with higher profit, customer credit  of future business opportunity, and the negotiability level of  production schedule for the order.

 

Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
10996 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3377
10995 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters

Authors: Renkai Wang, Tingcun Wei

Abstract:

In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.

Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
10994 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error

Authors: Hong Son Hoang, Remy Baraille

Abstract:

This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.

Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
10993 A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems

Authors: Ghalem Belalem, Yahya Slimani

Abstract:

Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.

Keywords: Data Grid, replication, consistency, optimistic approach, pessimistic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
10992 Analysis of a Population of Diabetic Patients Databases with Classifiers

Authors: Murat Koklu, Yavuz Unal

Abstract:

Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.

Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5436
10991 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms

Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera

Abstract:

This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.

Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
10990 Discovery of Time Series Event Patterns based on Time Constraints from Textual Data

Authors: Shigeaki Sakurai, Ken Ueno, Ryohei Orihara

Abstract:

This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.

Keywords: Text mining, sequential mining, time constraints, daily business reports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
10989 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

Authors: Usha N. Murthy, Rekha H. B., Mahaveer Devoor

Abstract:

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Keywords: Electrochemical treatment, COD, color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
10988 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: Entropy generation, mixed convection, conjugate heat transfer, numerical, nanofluid, wall waviness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
10987 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model

Authors: Banashree N. P., R. Vasanta

Abstract:

Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.

Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
10986 Cellular Automata Based Robust Watermarking Architecture towards the VLSI Realization

Authors: V. H. Mankar, T. S. Das, S. K. Sarkar

Abstract:

In this paper, we have proposed a novel blind watermarking architecture towards its hardware implementation in VLSI. In order to facilitate this hardware realization, cellular automata (CA) concept is introduced. The CA has been already accepted as an attractive structure for VLSI implementation because of its modularity, parallelism, high performance and reliability. The hardware realizable multiresolution spread spectrum watermarking techniques are very few in numbers in spite of their best ever resiliency against signal impairments. This is because of the computational cost and complexity associated with their different filter banks and lifting techniques. The concept of cellular automata theory in order to form a new transform domain technique i.e. Cellular Automata Transform (CAT) have been incorporated. Since CA provides spreading sequences having very low cross-correlation properties, the CA based pseudorandom sequence generator is considered in the present work. Considering the watermarking technique as a digital communication process, an error control coding (ECC) must be incorporated in the data hiding schemes. Besides the hardware implementation of entire CA based data hiding technique, the individual blocks of the algorithm using CA provide the best result than that of some other methods irrespective of the hardware and software technique. The Cellular Automata Transform, CA based PN sequence generator, and CA ECC are the requisite blocks that are developed not only to meet the reliable hardware requirements but also for the basic spread spectrum watermarking features. The proposed algorithm shows statistical invisibility and resiliency against various common signal-processing operations. This algorithmic design utilizes the existing allocated bandwidth in the data transmission channel in a more efficient manner.

Keywords: Cellular automata, watermarking, error control coding, PN sequence, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
10985 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.

Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
10984 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: Canny pruning, hand recognition, machine learning, skin tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
10983 High Resolution Images: Segmenting, Extracting Information and GIS Integration

Authors: Erick López-Ornelas

Abstract:

As the world changes more rapidly, the demand for update information for resource management, environment monitoring, planning are increasing exponentially. Integration of Remote Sensing with GIS technology will significantly promote the ability for addressing these concerns. This paper presents an alternative way of update GIS applications using image processing and high resolution images. We show a method of high-resolution image segmentation using graphs and morphological operations, where a preprocessing step (watershed operation) is required. A morphological process is then applied using the opening and closing operations. After this segmentation we can extract significant cartographic elements such as urban areas, streets or green areas. The result of this segmentation and this extraction is then used to update GIS applications. Some examples are shown using aerial photography.

Keywords: GIS, Remote Sensing, image segmentation, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
10982 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems

Authors: Dae-Hee Son, Soon-Ryul Nam

Abstract:

The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.

Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
10981 Bayesian Geostatistical Modelling of COVID-19 Datasets

Authors: I. Oloyede

Abstract:

The COVID-19 dataset is obtained by extracting weather, longitude, latitude, ISO3666, cases and death of coronavirus patients across the globe. The data were extracted for a period of eight day choosing uniform time within the specified period. Then mapping of cases and deaths with reverence to continents were obtained. Bayesian Geostastical modelling was carried out on the dataset. The study found out that countries in the tropical region suffered less deaths/attacks compared to countries in the temperate region, this is due to high temperature in the tropical region.

Keywords: COVID-19, Bayesian, geostastical modelling, prior, posterior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480
10980 Numerical Investigation of the Thermal Separation in a Vortex Tube

Authors: N.Pourmahmoud, S.Akhesmeh

Abstract:

This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.

Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
10979 Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties

Authors: N. Bakradze, N. Gagelidze, T. Dumbadze, L. Amiranashvili, A. D. L. Batako

Abstract:

Cereals are considered as a strategic product in human life and their demand is increasing with the growth of world population. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing bacteria - Azospirillum brasilense. In the region there are the wheat varieties - Dika and Lomtagora, which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Lomtagora 126 differs with its winter and drought resistance, and it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. This paper presents some preliminary experimental results where a continuous CO2 laser with a power of 25-40 W was used to radiate grains at a flow rate of 10 and 15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with A. brasilense isolate (108-109 CFU/ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. The results of our research show that combined treatment with laser and A. brasilense significantly influenced the germination of wheat. In the case of the Lomtagora 126 variety, grains were exposed to the beam on a speed of 10 cm/sec, only slightly improved the growth for 38-day seedlings, in case of exposition of grains with a speed of 15 cm/sec - by 23%. Treatment of seeds with A. brasilense in both exposed and non-exposed variants led to an improvement in the growth of seedlings, with A. brasilense alone - by 22%, and with combined treatment of grains - by 29%. In the case of the Dika variety, only exposure led to growth by 8-9%, and the combined treatment - by 10-15%, in comparison with the control variant. Superior effect on growth of seedlings of different varieties was achieved with the combinations of laser treatment on grains in a beam of 15 cm/sec (radiation power 30-40 W) and in addition of A. brasilense - nitrogen fixing bacteria. Therefore, this is a promising application of A. brasilense as active agents of bacterial fertilizers due to their ability of molecular nitrogen fixation in cereals in combination with laser irradiation: choosing a proper strain gives a good ability to colonize roots of agricultural crops, providing a high nitrogen-fixing ability and the ability to mobilize soil phosphorus, and laser treatment stimulates natural processes occurring in plant cells, will increase the yield.

Keywords: laser treatment, Azospirillum brasilense, seeds, wheat varieties, Lomtagora, Dika

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
10978 Contextual Variables Affecting Frustration Level in Reading: An Integral Inquiry

Authors: Mae C. Pavilario

Abstract:

This study employs a sequential explanatory mixed method. Quantitatively it investigated the profile of grade VII students. Qualitatively, the prevailing contextual variables that affect their frustration-level were sought based on their perspective and that of their parents and teachers. These students were categorized as frustration-level in reading based on the data on word list of the Philippine Informal Reading Inventory (Phil-IRI). The researcher-made reading factor instrument translated to local dialect (Hiligaynon) was subjected to cross-cultural translation to address content, semantic, technical, criterion, or conceptual equivalence, the open-ended questions, and one unstructured interview was utilized. In the profile of the 26 participants, the 12 males are categorized as grade II and grade III frustration-levels. The prevailing contextual variables are personal-“having no interest in reading”, “being ashamed and fear of having to read in front of others” for extremely high frustration level; social environmental-“having no regular reading schedule at home” for very high frustration level and personal- “having no interest in reading” for high frustration level. Kendall Tau inferential statistical tool was used to test the significant relationship in the prevailing contextual variables that affect frustration-level readers when grouped according to perspective. Result showed that significant relationship exists between students-parents perspectives; however, there is no significant relationship between students’ and teachers’, and parents’ and teachers’ perspectives. The themes in the narratives of the participants on frustration-level readers are existence of speech defects, undesirable attitude, insufficient amount of reading materials, lack of close supervision from parents, and losing time and focus on task. Intervention was designed.

Keywords: Contextual variables, frustration-level readers, perspective, inquiry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
10977 Soft Computing based Retrieval System for Medical Applications

Authors: Pardeep Singh, Sanjay Sharma

Abstract:

With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.

Keywords: CBIR, GA, Rough sets, CBMIR, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
10976 Secure Power Systems Against Malicious Cyber-Physical Data Attacks: Protection and Identification

Authors: Morteza Talebi, Jianan Wang, Zhihua Qu

Abstract:

The security of power systems against malicious cyberphysical data attacks becomes an important issue. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.

Keywords: Algebraic Criterion, Malicious Cyber-Physical Data Injection, Protection and Identification, Trustworthy Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004