Search results for: Heart Electricity Model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7859

Search results for: Heart Electricity Model.

5369 Evaluating the Factors Influencing the Efficiency and Usage of Public Sports Services in a Chinese Province

Authors: Zhankun Wang, Timothy Makubuya

Abstract:

The efficiency of public sports service of prefecture-level cities in Zhejiang from 2008 to 2012 was evaluated by applying the DEA method, then its influencing factors were also analyzed through Tobit model. Upon analysis, the results revealed the following; (i) the change in average efficiency of public sports service in Zhejiang present a smooth uptrend and at a relatively high level from 2008 to 2012 (ii) generally, the productivity of public sports service in Zhejiang improved from 2008 to 2012, the productivity efficiency varied greatly in different years, and the regional difference of production efficiency increased. (iii) The correlations for urbanization rate, aging rate, per capita GDP and the population density were significantly positive with the public sports service efficiency in Zhejiang, of which the most significant was the aging rate. However, the population density and per capita GDP had less impact on the efficiency of public sports service in Zhejiang. In addition, whether the efficiency of public sports services in different areas in Zhejiang reciprocates to overall benefits in public wellbeing in both rural and urban settings is still arguable.

Keywords: DEA Model, public sports service, efficiency, Tobit model, Malmquist productivity index, Zhejiang.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
5368 Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression

Authors: Dursun Aydın, Bilgin Senel

Abstract:

In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example.

Keywords: Semi-parametric regression, Penalized LeastSquares, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
5367 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: Big data, building-value analysis, machine learning, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
5366 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
5365 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
5364 Cognitive Virtual Exploration for Optimization Model Reduction

Authors: Livier Serna, Xavier Fischer, Fouad Bennis

Abstract:

In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.

Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
5363 The Framework of System Safety for Multi Human-in-The-Loop System

Authors: Hideyuki Shintani, Ichiro Koshijima

Abstract:

In Cyber Physical System (CPS), if there are a large number of persons in the process, a role of person in CPS might be different comparing with the one-man system. It is also necessary to consider how Human-in-The-Loop Cyber Physical Systems (HiTLCPS) ensure safety of each person in the loop process. In this paper, the authors discuss a system safety framework with an illustrative example with STAMP model to clarify what point for safety should be considered and what role of person in the should have.

Keywords: Cyber Physical System, Human-in-The-Loop, Safety, STAMP model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
5362 Effects of Human Factors on Workforce Scheduling

Authors: M. Othman, N. Bhuiyan, G. J. Gouw

Abstract:

In today-s competitive market, most companies develop manufacturing systems that can help in cost reduction and maximum quality. Human issues are an important part of manufacturing systems, yet most companies ignore their effects on production performance. This paper aims to developing an integrated workforce planning system that incorporates the human being. Therefore, a multi-objective mixed integer nonlinear programming model is developed to determine the amount of hiring, firing, training, overtime for each worker type. This paper considers a workforce planning model including human aspects such as skills, training, workers- personalities, capacity, motivation, and learning rates. This model helps to minimize the hiring, firing, training and overtime costs, and maximize the workers- performance. The results indicate that the workers- differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human learning rates on the performance of the production systems.

Keywords: Human Factors, Learning Curves, Workers' Differences, Workforce Scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
5361 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: Bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
5360 Symbolic Model Checking of Interactions in Sequence Diagrams with Combined Fragments by SMV

Authors: Yuka Kawakami, Tomoyuki Yokogawa, Hisashi Miyazaki, Sousuke Amasaki, Yoichiro Sato, Michiyoshi Hayase

Abstract:

In this paper, we proposed a method for detecting consistency violation between state machine diagrams and a sequence diagram defined in UML 2.0 using SMV. We extended a method expressing these diagrams defined in UML 1.0 with boolean formulas so that it can express a sequence diagram with combined fragments introduced in UML 2.0. This extension made it possible to represent three types of combined fragment: alternative, option and parallel. As a result of experiment, we confirmed that the proposed method could detect consistency violation correctly with SMV.

Keywords: UML, model checking, SMV, sequence diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
5359 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, Information Technology (IT) and Operational Technology (OT) convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: Digitalization, IT/OT convergence, semantic interoperability, TEIA alliance, VPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
5358 Cash Flow Optimization on Synthetic CDOs

Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet

Abstract:

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

Keywords: Synthetic Collateralized Debt Obligation (CDO), Credit Default Swap (CDS), Cash Flow Optimization, Probability of Default, Default Correlation, Strategies, Simulation, Simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
5357 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach

Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian

Abstract:

The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.

Keywords: Aggregate Production Planning, Costs, and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
5356 The Relationship between Human Values and Service Quality with the Mediating Role of Motivation: A Quantitative Study on Malaysian Commercial Banks

Authors: Kuppusamy Singaravelloo, Zahra Kamiab

Abstract:

This study explores the mediating effects of motivation in the relationship between human values and service quality. To examine the fundamental relationships among human values, motivation, and service quality, a Structural Equation Model (SEM) with a full mediation model was adopted. The model was designed and subsequently analyzed by utilizing the Partial Least Squares (PLS) procedure on data collected from a survey that yielded 936 usable questionnaires. The survey was sent to all 117 branches of two local commercial banks (CIMB and Maybank) operating in Kuala Lumpur, Malaysia. Both banks ranked the highest in terms of asset size and market capitalization. The mediating role of motivation was examined in the relationship between four dimensions of human values and bank service quality, whereby human values initiate service quality. The results support the notion that employee motivation fully mediates the relationship between self-enhancement values and service quality in commercial banks. These results demonstrate the unpredictable role of the interaction structures of human values on bank service quality.

Keywords: Human values, service quality, mediation, motivation, commercial bank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
5355 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418
5354 Thermoelastic Damping of Inextensional Hemispherical Shell

Authors: S. Y. Choi, Y. H. Na, J. H. Kim

Abstract:

In this work, thermoelastic damping effect on the hemi- spherical shells is investigated. The material is selected silicon, and heat conduction equation for thermal flow is solved to obtain the temperature profile in which bending approximation with inextensional assumption of the model. Using the temperature profile, eigen-value analysis is performed to get the natural frequencies of hemispherical shells. Effects of mode numbers, radii and radial thicknesses of the model on the natural frequencies are analyzed in detail. Furthermore, the quality factor (Q-factor) is defined, and discussed for the ring and hemispherical shell.

Keywords: Thermoelastic damping, hemispherical shell, quality factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
5353 Non-Rigid Registration of Medical Images Using an Automated Method

Authors: Panos Kotsas

Abstract:

This paper presents the application of a signal intensity independent registration criterion for non-rigid body registration of medical images. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the ratios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation. The geometric transformation model adopted is a local cubic B-splines based model.

Keywords: Medical image, non-rigid, registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
5352 Mathematical Analysis of Stock Prices Prediction in a Financial Market Using Geometric Brownian Motion Model

Authors: Edikan E. Akpanibah, Ogunmodimu Dupe Catherine

Abstract:

The relevance of geometric Brownian motion (GBM) in modelling the behaviour of stock market prices (SMP) cannot be over emphasized taking into consideration the volatility of the SMP. Consequently, there is need to investigate how GBM models are being estimated and used in financial market to predict SMP. To achieve this, the GBM estimation and its application to the SMP of some selected companies are studied. The normal and log-normal distributions were used to determine the expected value, variance and co-variance. Furthermore, the GBM model was used to predict the SMP of some selected companies over a period of time and the mean absolute percentage error (MAPE) were calculated and used to determine the accuracy of the GBM model in predicting the SMP of the four companies under consideration. It was observed that for all the four companies, their MAPE values were within the region of acceptance. Also, the MAPE values of our data were compared to an existing literature to test the accuracy of our prediction with respect to time of investment. Finally, some numerical simulations of the graphs of the SMP, expectations and variance of the four companies over a period of time were presented using MATLAB programming software.

Keywords: Stock Market, Geometric Brownian Motion, normal and log-normal distribution, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268
5351 Eosinophils and Platelets: Players of the Game in Morbid Obese Boys with Metabolic Syndrome

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Childhood obesity, which may lead to increased risk for heart diseases in children as well as adults, is one of the most important health problems throughout the world. Prevalences of morbid obesity and metabolic syndrome (MetS) are being increased during childhood age group. MetS is a cluster of metabolic and vascular abnormalities including hypercoagulability and an increased risk of cardiovascular diseases (CVDs). There are also some relations between some components of MetS and leukocytes. The aim of this study is to investigate complete blood cell count parameters that differ between morbidly obese boys and girls with MetS diagnosis. A total of 117 morbid obese children with MetS consulted to Department of Pediatrics in Faculty of Medicine Hospital at Namik Kemal University were included into the scope of the study. The study population was classified based upon their genders (60 girls and 57 boys). Their heights and weights were measured and body mass index (BMI) values were calculated. WHO BMI-for age and sex percentiles were used. The values above 99 percentile were defined as morbid obesity. Anthropometric measurements were performed. Waist-to-hip and head-to-neck ratios as well as homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Hematological variables were measured. Statistical analyses were performed using SPSS. The degree for statistical significance was p ≤ 0.05. There was no statistically significant difference between the ages (11.2±2.6 years vs 11.2±3.0 years) and BMIs (28.6±5.2 kg/m2 vs 29.3±5.2 kg/m2) of boys and girls (p ≥ 0.05), respectively. Significantly increased waist-to-hip ratios were obtained for boys (0.94±0.08 vs 0.91±0.06; p=0.023). Significantly elevated values of hemoglobin (13.55±0.98 vs 13.06±0.82; p=0.004), mean corpuscular hemoglobin concentration (33.79±0.91 vs 33.21±1.14; p=0.003), eosinophils (0.300±0.253 vs 0.196±0.197; p=0.014), and platelet (347.1±81.7 vs 319.0±65.9; p=0.042) were detected for boys. There was no statistically significant difference between the groups in terms of neutrophil/lymphocyte ratios as well as HOMA-IR values (p ≥ 0.05). Statistically significant gender-based differences were found for hemoglobin as well as mean corpuscular hemoglobin concentration and hence, separate reference intervals for two genders should be considered for these parameters. Eosinophils may contribute to the development of thrombus in acute coronary syndrome. Eosinophils are also known to make an important contribution to mechanisms related to thrombosis pathogenesis in acute myocardial infarction. Increased platelet activity is observed in patients with MetS and these individuals are more susceptible to CVDs. In our study, elevated platelets described as dominant contributors to hypercoagulability and elevated eosinophil counts suggested to be related to the development of CVDs observed in boys may be the early indicators of the future cardiometabolic complications in this gender.

Keywords: Children, complete blood count, gender, metabolic syndrome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
5350 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers

Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen

Abstract:

Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.

Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
5349 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: Photovoltaic solar wall, solar energy, passive ventilation, active ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
5348 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
5347 Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia

Authors: David Calderón Villegas, Thomas Kalitzky

Abstract:

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate. 

Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, financial analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
5346 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
5345 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, steel shear wall, nonlinear, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
5344 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: Mung bean, near infrared, germinatability, hard seed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
5343 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: Composite material, crashworthiness, finite element analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
5342 Modelling, Simulation and Validation of Plastic Zone Size during Deformation of Mild Steel

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, O. O. Taiwo

Abstract:

A model to predict the plastic zone size for material under plane stress condition has been developed and verified experimentally. The developed model is a function of crack size, crack angle and material property (dislocation density). Simulation and validation results show that the model developed show good agreement with experimental results. Samples of low carbon steel (0.035%C) with included surface crack angles of 45o, 50o, 60o, 70o and 90o and crack depths of 2mm and 4mm were subjected to low strain rate between 0.48 x 10-3 s-1 – 2.38 x 10-3 s-1. The mechanical properties studied were ductility, tensile strength, modulus of elasticity, yield strength, yield strain, stress at fracture and fracture toughness. The experimental study shows that strain rate has no appreciable effect on the size of plastic zone while crack depth and crack angle plays an imperative role in determining the size of the plastic zone of mild steel materials.

Keywords: Applied stress, crack angle, crack size, material property, plastic zone size, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
5341 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints

Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann

Abstract:

This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.

Keywords: Rail-track components, maintenance, optimal clustering, possession capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
5340 Closed form Delay Model for on-Chip VLSIRLCG Interconnects for Ramp Input for Different Damping Conditions

Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar

Abstract:

Fast delay estimation methods, as opposed to simulation techniques, are needed for incremental performance driven layout synthesis. On-chip inductive effects are becoming predominant in deep submicron interconnects due to increasing clock speed and circuit complexity. Inductance causes noise in signal waveforms, which can adversely affect the performance of the circuit and signal integrity. Several approaches have been put forward which consider the inductance for on-chip interconnect modelling. But for even much higher frequency, of the order of few GHz, the shunt dielectric lossy component has become comparable to that of other electrical parameters for high speed VLSI design. In order to cope up with this effect, on-chip interconnect has to be modelled as distributed RLCG line. Elmore delay based methods, although efficient, cannot accurately estimate the delay for RLCG interconnect line. In this paper, an accurate analytical delay model has been derived, based on first and second moments of RLCG interconnection lines. The proposed model considers both the effect of inductance and conductance matrices. We have performed the simulation in 0.18μm technology node and an error of as low as less as 5% has been achieved with the proposed model when compared to SPICE. The importance of the conductance matrices in interconnect modelling has also been discussed and it is shown that if G is neglected for interconnect line modelling, then it will result an delay error of as high as 6% when compared to SPICE.

Keywords: Delay Modelling; On-Chip Interconnect; RLCGInterconnect; Ramp Input; Damping; VLSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048