
Symbolic model checking of interactions
in sequence diagrams with combined fragments

by SMV
Yuka KAWAKAMI†, Tomoyuki YOKOGAWA†, Hisashi MIYAZAKI†‡,

Sousuke AMASAKI†, Yoichiro SATO†, and Michiyoshi HAYASE†

Abstract—In this paper, we proposed a method for detecting
consistency violation between state machine diagrams and a sequence
diagram defined in UML 2.0 using SMV. We extended a method
expressing these diagrams defined in UML 1.0 with boolean formulas
so that it can express a sequence diagram with combined fragments
introduced in UML 2.0. This extension made it possible to represent
three types of combined fragment: alternative, option and parallel.
As a result of experiment, we confirmed that the proposed method
could detect consistency violation correctly with SMV.

Keywords—UML, model checking, SMV, sequence diagram.

I. INTRODUCTION

Unified Modeling Language (UML)[1] is a formal language
used to describe structure and behavior of a software system
and is widely used in software development. In software
development using UML, dynamic behavior of a system is
modeled by state machine diagram and sequence diagram .
The state machine diagram focuses on state transitions of an
element in regard to various events and the sequence diagram
focuses on message interchanges between elements along with
a time sequence. Because these two diagrams are used to repre-
sent different perspectives of a system separately, consistency
between them can easily be violated. Such an inconsistency
leads to errors in the latter stages of development.

Because it is difficult to detect inconsistency with human
review, automatic methods for verifying consistency of UML
diagrams were proposed[2], [3], [4], [5]. We have also devel-
oped a method[6] for verifying consistency between state ma-
chine diagrams and a sequence diagram using symbolic model
checker SMV[7]. This method modeled message interchanges
in a sequence diagram as a transition system using symbolic
representation. However, these methods can not verify UML
diagrams with combined fragments introduced in UML 2.0
which are used to describe complex structure in a sequence
diagram.

In this paper, we proposed a method for verifying con-
sistency of state machine diagrams and a sequence diagram
with combined fragments. We extended the method we have
proposed[6] so that it can model a sequence diagram with

†Graduate School of Systems Engineering, Okayama Prefectural Uni-
versity, Kuboki 111, Soja-shi, Okayama, 719–1197 Japan (e-mail:
kawakami, miyazaki@circuit.cse.oka-pu.ac.jp, {t-yokoga, amasaki, sato,
hayase}@cse.oka-pu.ac.jp).

‡Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki-shi,
Okayama 701-0193, Japan (e-mail: miyazaki@me.kawasaki-m.ac.jp).

Manuscript received September, 2010; revised October 31, 2010.

combined fragments. This method can model three types of
combined fragment. We applied this method to an example and
confirmed it could detect inconsistency correctly using SMV.

II. CONSISTENCY OF UML DIAGRAMS

The consistency of UML diagrams is classified into static
and dynamic consistency. The static consistency means corre-
spondence of elements of diagrams and the dynamic consis-
tency means correspondence of behaviour of diagrams. In this
paper, we focused on verification of the dynamic consistency.

For example, consider a system described by three UML
diagrams in Figure 1. State machine diagrams in Figure
1(a) and (b) describe that Obj1 sends a message m1 and
Obj2 receives it. However, sequence diagram in Figure 1(c)
describes that Obj2 sends m1 and Obj1 receives it. Thus
behaviours of these diagrams are inconsistent.

S1 S2/m1

S3 S4m1

(b) Obj2

(a) Obj1 m1

Obj1 Obj2

(c)

Fig. 1. An example of consistency violation

III. SYMBOLIC REPRESENTATION

A. State machine diagram

The state machine diagram models transition relations of
elements in a system. In the proposed method, a transition in
a state machine diagram is expressed as a boolean formula
equivalent to execution of that transition.

A transition ti ∈ T is represented as a formula act(ti) which
evaluates true iff ti is executed. act(ti) is a conjunction of the
following three formulas: pre(ti) representing pre-condition
of ti, post(ti) representing post-condition of ti, and inv(ti)
representing condition for unchanged elements of ti.

The pre-condition of ti is a conjunction of the following
three conditions: (1) source state of ti is active, (2) event of ti
is activated, and (3) guard condition of ti evaluates true. Hence
pre(ti) is represented as the following boolean formula:

pre(ti) ≡ srci ∧ evti ∧ grdi,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010 

1692International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
4.

pd
f



where srci is a boolean variable representing that source state
of ti is active, evti is a boolean variable representing that event
of ti is activated and grdi is a predicate which evaluates true
if guard condition of ti is satisfied.

The post-condition of ti is a conjunction of the following
three conditions: (1) target state of ti is active, (2) event of
ti is not activated, and (3) operation by the action of ti is
performed. Hence post(ti) is represented as the following
boolean formula:

post(ti) ≡ tgti ∧ ¬evti
′ ∧ acti ∧ ¬srci

′,

where tgti is a boolean variable representing that target state of
ti is active, acti is a predicate which evaluates true if operation
by action of ti is performed. x′ represents a value of variable
represented by a symbol x in a state after a transition.

The condition for unchanged elements of ti is represented
as the following formula:

inv(ti) ≡
∧

v∈Unchange(ti)

(v′ = v),

where Unchange(ti) is a set of variables representing ele-
ments which do not change by ti.

As stated above, act(ti) is a conjunction of the above three
formulas:

act(ti) ≡ pre(ti) ∧ post(ti) ∧ inv(ti).

The boolean formula B representing transition relations of a
state machine diagram is a disjunction of each act(ti).

B ≡
∨

ti∈T

act(ti).

B. Sequence diagram

The sequence diagram represents order relations of message
processing. This paper only focuses on sequence diagram with
asynchronous messages. As in the case of state machine dia-
gram, message processing of a sequence diagram is expressed
using boolean formulas.

An occurrence oi·j ∈ O, which is the jth occurrence
of lifeline li, is represented as a formula act(oi·j) which
evaluates true iff oi·j is executed. act(oi·j) is a conjunction
of the following three formulas: pre(oi·j) representing pre-
condition of oi·j , post(oi·j) representing post-condition of oi·j ,
and inv(oi·j) representing condition for unchanged elements
of oi·j . These three conditions are represented with boolean
representations for sending and receiving occurrence.

1) Representation of sending occurrence: The pre-
condition of sending occurrence oi·j is a conjunction of the
following three conditions: (1) precedent occurrence oi·j−1 is
executed, (2) oi·j is not executed, and (3) message of oi·j is
not activated. Hence pre(oi·j) is represented as the following
boolean formula:

pre(oi·j) ≡ oi·j−1 ∧ ¬oi·j ∧ ¬mi·j,

where oi·j is a boolean variable representing that occurrence
oi·j is executed and mi·j is a boolean variable representing that
message of oi·j is activated.

The post-condition of sending occurrence oi·j is a conjunc-
tion of the following conditions: (1) oi·j is executed, and (2)
message of oi·j is activated. Hence post(oi·j) is represented
as the following boolean formula:

post(oi·j) ≡ oi·j′ ∧ mi·j′.

The condition for unchanged elements of oi·j is represented
as the following formula:

inv(oi·j) ≡
∧

o∈O\oi·j

o′ = o.

2) Representation of receiving occurrence: The pre-
condition of receiving occurrence oi·j is a conjunction of the
following three conditions: (1) precedent occurrence oi·j−1 is
executed, (2) oi·j is not executed, (3) a sender of message
of oi·j (call it ok·l) is executed, and (4) message of oi·j
is activated. Hence pre(oi·j) is represented as the following
boolean formula:

pre(oi·j) ≡ oi·j−1 ∧ ¬oi·j ∧ ok·l ∧ mi·j.

The post-condition of receiving occurrence oi·j is a con-
junction of the following conditions: (1) oi·j is executed,
and (2) message of oi·j is not activated. Hence post(oi·j) is
represented as the following boolean formula:

post(oi·j) ≡ oi·j′ ∧ ¬mi·j′.

The condition for unchanged elements of oi·j is represented
as the following formula:

inv(oi·j) ≡
∧

o∈O\oi·j

o′ = o.

As stated above, act(oi·j) is a conjunction of the above
three formulas:

act(oi·j) ≡ pre(oi·j) ∧ post(oi·j) ∧ inv(oi·j).

The boolean formula S representing order relations of message
processing of a sequence diagram is a disjunction of each
act(oi·j).

S ≡
∨

oi·j∈O

act(oi·j).

C. Combined fragment

1) alternative: Alternative combined fragment describes
branching operation in a sequence diagram. Interactions in
a sub-fragment are taken only when a guard condition of
that sub-fragment is satisfied. Figure 2 showed an example of
alternative combined fragment. Note that precedent occurrence
of o2.2 is not o2.1 but o2.0. This is because either o2.1 or o2.2

is executed in this alternative combined fragment.
We modified pre-conditions of sending and receiving occur-

rences in and after an alternative combined fragment in order
to represent that fragment with boolean expression. In the case
of Figure 2, they are modified as follows. The pre-condition
of sending occurrence o1.1 is a conjunction of the following
conditions: (1) o1.0 is executed, (2) o1.1 is not executed, (3)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010 

1693International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
4.

pd
f



alt

[y]

[x]
o2.0

o1.3

o2.1

o2.2

o2.3

m0

m1

m2

m3

Obj1 Obj2

o1.2

o1.1

o1.0

Fig. 2. An example of alternative combined fragment

m1 is not activated, and (4) a boolean variable x evaluates
true. Hence pre(o1.1) is represented as the formula:

pre(o1.1) ≡ o1.0 ∧ ¬o1.1 ∧ ¬m1 ∧ x.

The pre-condition of o2.2 is also represented as the formula:

pre(o2.2) ≡ o2.0 ∧ ¬o2.2 ∧ ¬m2 ∧ y.

The pre-condition of o1.3 is a conjunction of the following
conditions: (1) o1.1 is executed and x evaluates true or o1.2

is executed and y evaluates true or o1.0 is executed and x∨ y
evaluates false, (2) o1.3 is not executed, and (3) m3 is not
activated. Hence pre(o1.3) is represented as the formula:

pre(o1.3) ≡ (o1.1 ∧ x ∨ o1.2 ∧ y ∨ o1.0 ∧ ¬(x ∨ y))
∧¬o1.3 ∧ ¬m3.

The pre-condition of receiving occurrence o2.1 is a conjunc-
tion of the following conditions: (1) o2.0 is executed, (2) o2.1

is not executed, (3) o1.1 is executed, (4) m1 is activated, and
(5) x evaluates true. Hence pre(o2.1) is represented as the
formula:

pre(o2.1) ≡ o2.0 ∧ ¬o2.1 ∧ o1.1 ∧ m1 ∧ x.

The pre-condition of o1.2 and o2.3 are represented as the
formulas:

pre(o1.2) ≡ o1.0 ∧ ¬o1.2 ∧ o2.2 ∧ m2 ∧ y,

pre(o2.3) ≡ (o1.1 ∧ x ∨ o1.2 ∧ y ∨ o1.0 ∧ ¬(x ∨ y))
∧¬o2.3 ∧ o1.3 ∧ m3.

2) option: Option combined fragment describes an optional
operation in a sequence diagram. If a guard condition of a
fragment is unsatisfied, interactions in it are not executed.
Figure 3 showed an example of option combined fragment.

opt [x]

o2.0

o2.1

o2.2

m0

m1

m2

Obj1 Obj2

o1.2

o1.1

o1.0

Fig. 3. An example of option combined fragment

As in the case of alternative combined fragment, pre-
conditions of occurrences in and after that fragment are
modified. In Figure 3 the pre-condition of sending occurrence
o1.1 is a conjunction of the following conditions: (1) o1.0 is
executed, (2) o1.1 is not executed, (3) m1 is not activated, and

(4) x evaluates true. Hence pre(o1.1) is represented as the
formula:

pre(o1.1) ≡ o1.0 ∧ ¬o1.1 ∧ ¬m1 ∧ x.

The pre-condition of o1.2 is a conjunction of the following
conditions: (1) o1.1 is executed and x evaluates true or o1.0 is
executed and x evaluates false, (2) o1.3 is not executed, and
(3) m3 is not activated. Hence pre(o1.3) is represented as the
formula:

pre(o1.3) ≡ (o1.1 ∧ x ∨ o1.0 ∧ ¬y) ∧ ¬o1.3 ∧ ¬m3.

The pre-condition of receiving occurrence o2.1 is a conjunc-
tion of the following conditions: (1) o2.0 is executed, (2) o2.1

is not executed, (3) o1.1 is executed, (4) m1 is activated, and
(5) x evaluates true. Hence pre(o2.1) is represented as the
formula:

pre(o2.1) ≡ o2.0 ∧ ¬o2.1 ∧ o1.1 ∧ m1 ∧ x.

The pre-condition of o2.2 is represented as the formula:

pre(o2.2) ≡ (o2.1 ∧ x ∨ o2.0 ∧ ¬x) ∧ ¬o2.2 ∧ o1.2 ∧ m2.

3) parallel: Parallel combined fragment describes paral-
lel operations in a sequence diagram. Interactions in sub-
fragments are executed concurrently. Figure 4 showed an
example of parallel combined fragment. Note that precedent
occurrence of o1.2 is o1.0. This is because m1 and m2 are
processed concurrently in this parallel combined fragment.

par
o2.0

o1.3

o2.1

o2.2

o2.3

m0

m1

m2

m3

Obj1 Obj2

o1.2

o1.1

o1.0

Fig. 4. An example of parallel combined fragment

As in the case of alternative combined fragment, pre-
conditions of occurrences in and after that fragment are
modified. In Figure 4 the pre-condition of sending occurrence
o1.1 is a conjunction of the following conditions: (1) o1.0 is
executed, (2) o1.1 is not executed, and (3) m1 is not activated.
Hence pre(o1.1) is represented as the formula:

pre(o1.1) ≡ o1.0 ∧ ¬o1.1 ∧ ¬m1.

The pre-condition of o1.2 is represented as the formula:

pre(o1.1) ≡ o1.0 ∧ ¬o1.2 ∧ ¬m2.

The pre-condition of o1.3 is a conjunction of the following
conditions: (1) all receiving occurrences in this fragment, that
is, o2.1 and o2.2 are executed, (2) o1.3 is not executed, and
(3) m3 is not activated. Hence pre(o1.3) is represented as the
formula:

pre(o1.3) ≡ o2.1 ∧ o2.2 ∧ ¬o1.3 ∧ ¬m3.

The pre-condition of receiving occurrence o2.1 is a conjunc-
tion of the following conditions: (1) o2.0 is executed, (2) o2.1

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010 

1694International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
4.

pd
f



is not executed, (3) o1.1 is executed, and (4) m1 is activated.
Hence pre(o2.1) is represented as the formula:

pre(o2.1) ≡ o2.0 ∧ ¬o2.1 ∧ o1.1 ∧ m1.

The pre-condition of o2.2 and o2.3 are represented as the
formulas:

pre(o2.2) ≡ o2.0 ∧ ¬o2.2 ∧ o1.2 ∧ m2,

pre(o2.3) ≡ o2.1 ∧ o2.2 ∧ ¬o2.3 ∧ o1.3 ∧ m3.

D. Input of SMV

SMV needs two inputs. One is a conjunction of boolean
formulas B and S, B ∧ S. It models a software system
as a transition system which satisfies transition relations in
state machine diagrams and order relations of messages in a
sequence diagram.

Another is a CTL formula expressing a property to be
verified. If a sequence diagram and state machine diagrams
of a software system are consistent, all occurrences in this
sequence diagram can be executed. This property is expressed
as the following CTL formula:∧

oi·j∈O

EFoi·j.

IV. APPLICATION RESULT

We applied the proposed method to state machine diagrams
and a sequence diagram in Figure 5 and verified consistency
between them by using SMV. In the system described by
the state machine diagrams, either x or y becomes true
nondeterministically. If x is true then Obj1 sends message
m1 to Obj2, else if y is true then Obj2 sends message m2 to
Obj1.

Figure 6 shows the results of consistency verification. Fig-
ure 6(a) indicates the CTL formula evaluates true and that
consistency of the diagrams is satisfied. Figure 6(b) indicates
the CTL formula evaluates false and that inconsistency be-
tween the sequence diagram in Figure 5(d) and state machine
diagrams could be detected.

S1 S4S3S2 S5 S6

m3

(b) Obj2(a) Obj1

alt

[y]

[x]
o2.0

o1.3

o2.1

o2.2

o2.3

m0

m1

m2

m3

Obj1 Obj2

o1.2

o1.1

o1.0
alt

[y]

[x]
o2.0

o1.3

o2.1

o2.2

o2.3

m0

m1

m2

m3

Obj1 Obj2

o1.2

o1.1

o1.0

(d)(c)

/m0

/m3

m2

[x]/m 1

[y]/m 2

m1

m0 /x=0,y=1

m0 /x=1,y=0

Fig. 5. Examples of UML diagrams

-- specification EF o1_0 & EF o1_1 & EF o1_2 & EF o1_3 & ... 
is true

resources used:
processor time: 0 s, 
BDD nodes allocated: 10012
Bytes allocated: 1171452
BDD nodes representing transition relation: 385 + 1
reachable states: 132 (2^7.04439) out of 147456 (2^17.1699)

(a) consistency of Figure 5(a),(b) and (c)

-- specification EF o1_0 & EF o1_1 & EF o1_2 & EF o1_3 & ... 
is false
-- as demonstrated by the following execution sequence
state 1.1:
...

resources used:
processor time: 0 s, 
BDD nodes allocated: 9787
Bytes allocated: 1171452
BDD nodes representing transition relation: 360 + 1
reachable states: 13 (2^3.70044) out of 147456 (2^17.1699)

(b) consistency of Figure 5(a),(b) and (d)

Fig. 6. Results of the consistency verification by SMV

V. CONCLUSION

In this paper, we proposed a method for verifying con-
sistency of UML diagrams with combined fragments. This
method can treat three types of combined fragments: alterna-
tive, option and parallel. We also confirmed that our method
could verify consistency of state machine diagrams and a
sequence diagram with a combined fragment.

For the future work, it is necessary to extend the proposed
method to other type of combined fragments. In addition,
handling synchronous messages is required in practice.

REFERENCES

[1] O. M. Group, Unified Modeling Language. Object Management Group,
2001, http://www.uml.org.

[2] S. Bernardi, S. Donatelli, and J. Merseguer, “From uml sequence diagrams
and statecharts to analysable petrinet models,” in Workshop on Software
and Performance, 2002, pp. 35–45.

[3] B. Litvak, S. S. Tyszberowicz, and A. Yehudai, “Behavioral consistency
validation of UML diagrams,” in SEFM. IEEE Computer Society, 2003,
pp. 118–125.

[4] T. Schäfer, A. Knapp, and S. Merz, “Model checking uml state machines
and collaborations,” Electr. Notes Theor. Comput. Sci., vol. 55, no. 3,
2001.

[5] X. Zhao, Q. Long, and Z. Qiu, “Model checking dynamic UML consis-
tency,” in ICFEM, ser. Lecture Notes in Computer Science, Z. Liu and
J. He, Eds., vol. 4260. Springer, 2006, pp. 440–459.

[6] S. Harada, T. Yokogawa, H. Miyazaki, Y. Sato, and M. Hayase, “A tool
support for verifying consistency between UML diagrams by SMV,” in
ITC-CSCC, 2009, pp. 897–900.

[7] K. McMillan, Symbolic Model Checking. Kluwer Academic, 1993.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010 

1695International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
4.

pd
f




