Search results for: headspace extraction temperature
824 Effect of Different Contaminants on Mineral Insulating Oil Characteristics
Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto
Abstract:
Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.
Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 456823 Solar Radiation Studies for Dubai and Sharjah, UAE
Authors: Muhammed A. Ahmed, Sidra A. Shaikh
Abstract:
Global Solar Radiation (H) for Dubai and Sharjah, Latitude 25.25oN, Longitude 55oE and 25.29oN, Longitude 55oE respectively have been studied using sunshine hour data (n) of the areas using various methods. These calculated global solar radiation values are then compared to the measured values presented by NASA. Furthermore, the extraterrestrial (H0), diffuse (Hd) and beam radiation (Hb) are also calculated. The diffuse radiation is calculated using methods proposed by Page and Liu and Jordan (L-J). Diffuse Radiation from the Page method is higher than the L-J method. Moreover, the clearness index (KT) signifies a clear sky almost all year round. Rainy days are hardly a few in a year and limited in the months December to March. The temperature remains between 25oC in winter to 44oC in summer and is desirable for thermal applications of solar energy. From the estimated results, it appears that solar radiation can be utilized very efficiently throughout the year for photovoltaic and thermal applications.Keywords: Dubai, Sharjah, Global Solar Radiation, Diffuse Radiation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9298822 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.
Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442821 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body
Authors: R. Haoui
Abstract:
Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.
Keywords: Hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203820 Screened Potential in a Reverse Monte Carlo (RMC) Simulation
Authors: M. Habchi, S. M. Mesli, M. Kotbi
Abstract:
A structural study of an aqueous electrolyte whose experimental results are available. It is a solution of LiCl-6H2O type at glassy state (120K) contrasted with pure water at room temperature by means of Partial Distribution Functions (PDF) issue from neutron scattering technique. Based on these partial functions, the Reverse Monte Carlo method (RMC) computes radial and angular correlation functions which allow exploring a number of structural features of the system. The obtained curves include some artifacts. To remedy this, we propose to introduce a screened potential as an additional constraint. Obtained results show a good matching between experimental and computed functions and a significant improvement in PDFs curves with potential constraint. It suggests an efficient fit of pair distribution functions curves.Keywords: RMC simulation; Screened potential; partial and pair distribution functions; glassy and liquid state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526819 The Crack Propagation on Glass in Laser Thermal Cleavage
Authors: Jehnming Lin
Abstract:
In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes.
Keywords: Laser cleavage, glass, fracture, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821818 Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling
Authors: Kyoung Hoon Kim
Abstract:
Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.Keywords: Water injection, wet compression, gas turbine, turbine blade cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3408817 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: Substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594816 The Effect of Relaxation Training on First Year Nursing Students Anxiety in Clinical Setting
Authors: S. Ahmadnejad, Z. Monjamed, M. Pakravannejad, A. Malekian
Abstract:
The investigating and assessing the effects of relaxation training on the levels of state anxiety concerning first year female nursing students at their initial experience in clinical setting. This research is a quasi experimental study that was carried out in nursing and midwifery faculty of Tehran university of medical sciences .The sample of research consists 60 first term female nursing students were selected through convenience and random sampling. 30 of them were the experimental group and 30 of them were in control group. The Instruments of data-collection has been a questionnaire which consists of 3 parts. The first part includes 10 questions about demographic characteristics .the second part includes 20 question about anxiety (test 'Spielberg' ). The 3rd part includes physiological indicators of anxiety (BP, P, R, body temperature). The statistical tests included t-test and and fisher test, Data were analyzed by SPSS software.Keywords: Anxiety, Nursing students, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592815 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance
Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi
Abstract:
This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.
Keywords: Vacuum pressure impregnation, resin rich, insulation, stator bar, dissipation factor, voltage endurance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586814 Modeling and Simulation of Axial Fan Using CFD
Authors: Hemant Kumawat
Abstract:
Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively low pressures. In general, they are low in cost and possess good efficiency, and can have blades of airfoil shape. Axial flow fans show good efficiencies, and can operate at high static pressures if such operation is necessary. Our objective is to model and analyze the flow through AXIAL FANS using CFD Software and draw inference from the obtained results, so as to get maximum efficiency. The performance of an axial fan was simulated using CFD and the effect of variation of different parameters such as the blade number, noise level, velocity, temperature and pressure distribution on the blade surface was studied. This paper aims to present a final 3D CAD model of axial flow fan. Adapting this model to the available components in the market, the first optimization was done. After this step, CFX flow solver is used to do the necessary numerical analyses on the aerodynamic performance of this model. This analysis results in a final optimization of the proposed 3D model which is presented in this article.
Keywords: ANSYS CFX, Axial Fan, Computational Fluid Dynamics (CFD), Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11202813 Absorption of CO2 in EAF Reducing Slag from Stainless Steel Making Process by Wet Grinding
Authors: B.M.N. Nik Hisyamudin, S. Yokoyama, M. Umemoto
Abstract:
In the current study, we have conducted an experimental investigation on the utilization of electronic arc furnace (EAF) reducing slag for the absorption of CO2 via wet grinding method. It was carried out by various grinding conditions. The slag was ground in the vibrating ball mill in the presence of CO2 and pure water under ambient temperature. The reaction behavior was monitored with constant pressure method, and the changes of experimental systems volume as a function of grinding time were measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption was significantly increased in the case of wet grinding compare to the dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, weight of slag and initial pressure increased. However, it was decreased when the amount of water exceeds 200ml and when smaller balls were used. The absorption of CO2 occurred simultaneously with the start of the grinding and it stopped when the grinding was stopped. According to this research, the CO2 reacted with the CaO inside the slag, forming CaCO3.Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784812 Experimental Study of Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Inner Threaded Body
Authors: Gürol Önal, Kevser Dincer
Abstract:
In this experimental study, performance of a counter flow Ranque-Hilsch vortex tube (RHVT) with threads cut on its inner surface was investigated experimentally (pitch is 1 and 2 mm). The inner diameter of the vortex tube used was D=9 mm and the ratio of the tube’s length to diameter was L/D=12. The experimental system was a thermodynamic open system. Flow was controlled by a valve on the hot outlet side, where the valve was changed from a nearly closed position to its nearly open position. Fraction of cold flow (ξ) = 0.1-0.9, was determined under 300 and 350 kPa pressurized air. All experimental data were compared with each other, the maximum heating performance of the RHVT system was found to be 38.2 oC and the maximum cooling performance of the RHVT in this study was found to be -30.9 oC at pitch 1 mm.
Keywords: Ranque-Hilsch vortex tube, heating, cooling, temperature separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871811 Carotenoid Potential to Protect Cow-s Milk Fat Against Oxidative Deterioration
Authors: U. Antone, V. Sterna, J. Zagorska
Abstract:
Milk from differently fed cows (supplemented with carotenoids from carrots or palm oil product Carotino CAF 100) was obtained in a conventional dairy farm to assess the carotenoid potential to protect milk fat against oxidation. The extracted anhydrous milk fat (AMF) was tested by peroxide value, and Rancimat tests. Temperature, and light stimulation for reaction acceleration was used. The oxidative stability enhancement by carotenoids was detected in peroxide value test – the strongest effect was observed in palm oil, following by carrot supplemented group, compared to control group, whose feed was unchanged. Rancimat accelerated oxidation test results did not show any superiority of the oxidative stability of the AMF samples from milk of the carotenoidsupplemented cow groups. The average oxidation stability of AMF dark-stored samples was 12.59 ± 0.294 h, and it was significantly (p < 0.05) higher than that of AMF light-affected samples, i.e. 2.60 ± 0.191 h.
Keywords: antioxidants, dairy products, forages, lipid aging, peroxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120810 Forming of Nanodimentional Structure Parts in Carbon Steels
Authors: A. Korchunov, M. Chukin, N. Koptseva, M. Polyakova, A. Gulin
Abstract:
A way of achieving nanodimentional structural elements in high carbon steel by special kind of heat treatment and cold plastic deformation is being explored. This leads to increasing interlamellar spacing of ferrite-carbide mixture. Decreasing the interlamellar spacing with cooling temperature increasing is determined. Experiments confirm such interlamellar spacing with which high carbon steel demonstrates the highest treatment and hardening capability. Total deformation degree effect on interlamellar spacing value in a ferrite-carbide mixture is obtained. Mechanical experiments results show that high carbon steel after heat treatment and repetitive cold plastic deformation possesses high tensile strength and yield strength keeping good percentage elongation.
Keywords: High-carbon steel, nanodimensional structural element, interlamellar spacing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340809 Transient Thermal Stresses of Functionally Graded Thick Hollow Cylinder under the Green-Lindsay Model
Authors: Tariq T. Darabseh
Abstract:
The transient thermoelastic response of thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized coupled thermoelasticity based on the Green-Lindsay model is used. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the volume fractions of the constituents. The thermal and elastic governing equations are solved by using Galerkin finite element method. All the finite element calculations were done by using commercial finite element program FlexPDE. The transient temperature, radial displacement, and thermal stresses distribution through the radial direction of the cylinder are plotted.
Keywords: Finite element method, thermal stresses, Green-Lindsay theory, functionally graded material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005808 Hydrated Magnesium Borate Synthesis from MgCl2.6H2O at 80oC by Hydrothermal Method
Authors: A. S. Kipcak, P. Gurses, E. Moroydor Derun, S. Piskin
Abstract:
Borate minerals have attracted considerable attention in the past years due to their structural chemistry and mechanical properties in several industries. Recently, increasing attention has been paid to the use of; synthetically produced magnesium borates as catalysts reinforcing material for plastics, the conversion of hydrocarbons, electro-conductive treating agent, anti-wear and anti-corrosion materials. Magnesium borates can be synthesized by several methods such as; hydrothermal and solid-state (thermal) processes. In this study the hydrothermal production method was applied at the modest temperature of 80C along with convenient crystal growth. Using MgCl2.6H2O, H3BO3, and NaOH as starting materials, 30, 60, 120, 240 minutes of reaction times were studied. After all, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result the forms of Admontite and Mcallisterite minerals were synthesized.
Keywords: FT-IR, hydrothermal method, magnesium borates, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678807 Off-State Leakage Power Reduction by Automatic Monitoring and Control System
Authors: S. Abdollahi Pour, M. Saneei
Abstract:
This paper propose a new circuit design which monitor total leakage current during standby mode and generates the optimal reverse body bias voltage, by using the adaptive body bias (ABB) technique to compensate die-to-die parameter variations. Design details of power monitor are examined using simulation framework in 65nm and 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 10 μW for 32nm technology and about 12 μW for 65nm technology at the same power supply voltage as the core power supply. Moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop.Keywords: leakage current, leakage power monitor, body biasing, low power
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739806 Simulation and Analysis of the Shift Process for an Automatic Transmission
Authors: Kei-Lin Kuo
Abstract:
The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.Keywords: Automatic transmission, Simulation and analysis, Shift quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4512805 A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor
Authors: M. Khoshtinat, N. A. S. Amin, I. Noshadi
Abstract:
Direct conversion of methane to methanol by partial oxidation in a thermal reactor has a poor yield of about 2% which is less than the expected economical yield of about 10%. Conventional thermal catalytic reactors have been proposed to be superseded by plasma reactors as a promising approach, due to strength of the electrical energy which can break C-H bonds of methane. Among the plasma techniques, non-thermal dielectric barrier discharge (DBD) plasma chemical process is one of the most future promising technologies in synthesizing methanol. The purpose of this paper is presenting a brief review of CH4 oxidation with O2 in DBD plasma reactors based on the recent investigations. For this reason, the effect of various parameters of reactor configuration, feed ratio, applied voltage, residence time (gas flow rate), type of applied catalyst, pressure and reactor wall temperature on methane conversion and methanol selectivity are discussed.
Keywords: Dielectric barrier discharge, methane, methanol, partial oxidation, Plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931804 Environmental Efficacy on Heracleum persicum Essential Oils
Authors: Rahele Hasani, Iraj Mehregan, Kambiz Larijani, Taher Nejadsattari, Romain Scalone
Abstract:
Essential oils of Heracleum persicum (Apiaceae) have been widely used from many years ago, but the difference of its properties among different populations have not been identified up to now. Hydrodistilation Clevenger type was used to obtaining the fruit essential oils of four populations of H. persicum from different localities in Iran, then they were characterized by GC-FID and GC-MS analyses. Some ecological factors were also measured. The oils of four populations were compared to determine the similarities and differences and the relationships between these factors and ecological factors. Based on the result, 18-32 different components were identified in four populations, while the percentage of the main components was higher in population with lower number of components. According to the statistical analyses of chemical components and ecological factors, it can be concluded that some ecological factors such as altitude, less humidity, high difference between day and night temperature and salty soil would lead to lower number of components in essential oil, whereas they consist the higher percentage.
Keywords: Chemotaxonomy, Persian hogweed, ecological factors, Apiaceae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577803 Research and Development of Intelligent Cooling Channels Design System
Authors: Q. Niu, X. H. Zhou, W. Liu
Abstract:
The cooling channels of injection mould play a crucial role in determining the productivity of moulding process and the product quality. It’s not a simple task to design high quality cooling channels. In this paper, an intelligent cooling channels design system including automatic layout of cooling channels, interference checking and assembly of accessories is studied. Automatic layout of cooling channels using genetic algorithm is analyzed. Through integrating experience criteria of designing cooling channels, considering the factors such as the mould temperature and interference checking, the automatic layout of cooling channels is implemented. The method of checking interference based on distance constraint algorithm and the function of automatic and continuous assembly of accessories are developed and integrated into the system. Case studies demonstrate the feasibility and practicality of the intelligent design system.
Keywords: Injection mould, cooling channel, automatic layout, interference checking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249802 Optimization Study of Adsorption of Nickel(II) on Bentonite
Authors: B. Medjahed, M. A. Didi, B. Guezzen
Abstract:
This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.
Keywords: Adsorption, bentonite, factorial design, Nickel(II).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932801 Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia
Authors: Kwok Tak Kit
Abstract:
Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 2 0C above the pre-industrial level in this century. An international submit named “26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.5 0C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study.
Keywords: Net-zero carbon, climate change, carbon emission, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709800 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309799 Mathematical Modeling of Gas Turbine Blade Cooling
Authors: А. Pashayev, C. Ardil, D. Askerov, R. Sadiqov, A. Samedov
Abstract:
In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.Keywords: Mathematical Modeling, Gas Turbine Blade Cooling, Neural Networks, BIEM and FDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092798 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions
Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz
Abstract:
This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.
Keywords: Absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711797 Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft
Authors: Rabah Haoui
Abstract:
Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8Keywords: Chemical kinetic, dissociation, finite volumes, frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonicflow , vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853796 Graft Copolymerization of Methyl Methacrylate onto Cellulose in Homogeneous Medium – Effect of Solvent and Initiator
Authors: B. Tosh, C. R. Routray
Abstract:
Homogeneous graft copolymerization of methyl methacrylate (MMA) onto cellulose was carried out in N, N – dimethyl acetamide/LiCl (DMAc/LiCl) and dimethyl sulfoxide/ paraformaldehyde (DMSO/PF) solvent system taking ceric ammonium nitrate (CAN), benzoyl peroxide (BPO) and tin (II)-2-ethyl hexanoate [Sn(Oct)2] as initiators. Different grafting parameters like graft yield (GY), grafting efficiency (GE) and total conversion of monomer to polymer (TC) were evaluated at different reaction conditions of temperature, time, and variation of the amount of monomer and initiator. The viscosity average molecular weight of grafted PMMA and number of grafts per cellulose chain were also calculated. The products were characterized by FT-IR and 1H-NMR analyses and possible reaction mechanisms were deduced. Thermal degradation of the grafted products was also studied by thermo-gravimetric analysis (TG) and differential thermo-gravimetry (DTG).
Keywords: Grafting, grafting efficiency, homogeneous medium, methyl methacrylate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184795 Bioleaching of Spent Catalyst using Moderate Thermophiles with Different Pulp Densities and Varying Size Fractions without Fe Supplemented Growth Medium
Authors: Haragobinda Srichandan, Chandra Sekhar Gahan, Dong-Jin Kim, Seoung-Won Lee
Abstract:
Bioleaching of spent catalyst using moderate thermophilic chemolithotrophic acidophiles in growth medium without Fe source was investigated with two different pulp densities and three different size fractions. All the experiments were conducted on shake flasks at a temperature of 65 °C. The leaching yield of Ni and Al was found to be promising with very high leaching yield of 92-96% followed by Al as 41-76%, which means both Ni and Al leaching were favored by the moderate thermophilic bioleaching compared to the mesophilic bioleaching. The acid consumption was comparatively higher for the 10% pulp density experiments. Comparatively minimal difference in the leaching yield with different size fractions and different pulp densities show no requirement of grinding and using low pulp density less than 10%. This process would rather be economical as well as eco-friendly process for future optimization of the recovery of metal values from spent catalyst.
Keywords: Bioleaching, spent catalyst, leaching yield, thermophile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331