Search results for: Implicit Euler Method.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8190

Search results for: Implicit Euler Method.

5790 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: Knowledge based engineering, biologically inspired design, knowledge cell, knowledge clustering, knowledge acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
5789 Optimal Image Compression Based on Sign and Magnitude Coding of Wavelet Coefficients

Authors: Mbainaibeye Jérôme, Noureddine Ellouze

Abstract:

Wavelet transforms is a very powerful tools for image compression. One of its advantage is the provision of both spatial and frequency localization of image energy. However, wavelet transform coefficients are defined by both a magnitude and sign. While algorithms exist for efficiently coding the magnitude of the transform coefficients, they are not efficient for the coding of their sign. It is generally assumed that there is no compression gain to be obtained from the coding of the sign. Only recently have some authors begun to investigate the sign of wavelet coefficients in image coding. Some authors have assumed that the sign information bit of wavelet coefficients may be encoded with the estimated probability of 0.5; the same assumption concerns the refinement information bit. In this paper, we propose a new method for Separate Sign Coding (SSC) of wavelet image coefficients. The sign and the magnitude of wavelet image coefficients are examined to obtain their online probabilities. We use the scalar quantization in which the information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also examined. We show that the sign information and the refinement information may be encoded by the probability of approximately 0.5 only after about five bit planes. Two maps are separately entropy encoded: the sign map and the magnitude map. The refinement information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also entropy encoded. An algorithm is developed and simulations are performed on three standard images in grey scale: Lena, Barbara and Cameraman. Five scales are performed using the biorthogonal wavelet transform 9/7 filter bank. The obtained results are compared to JPEG2000 standard in terms of peak signal to noise ration (PSNR) for the three images and in terms of subjective quality (visual quality). It is shown that the proposed method outperforms the JPEG2000. The proposed method is also compared to other codec in the literature. It is shown that the proposed method is very successful and shows its performance in term of PSNR.

Keywords: Image compression, wavelet transform, sign coding, magnitude coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
5788 Stress Variation of Underground Building Structure during Top-Down Construction

Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung

Abstract:

In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.

Keywords: Construction of building, top-down construction method, earth pressure distribution, member force, stress concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
5787 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
5786 Securing Message in Wireless Sensor Network by using New Method of Code Conversions

Authors: Ahmed Chalak Shakir, GuXuemai, Jia Min

Abstract:

Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.

Keywords: logic gates, code conversions, Gray-code, and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
5785 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
5784 Easy-Interactive Ordering of the Pareto Optimal Set with Imprecise Weights

Authors: Maria Kalinina, Aron Larsson, Leif Olsson

Abstract:

In the multi objective optimization, in the case when generated set of Pareto optimal solutions is large, occurs the problem to select of the best solution from this set. In this paper, is suggested a method to order of Pareto set. Ordering the Pareto optimal set carried out in conformity with the introduced distance function between each solution and selected reference point, where the reference point may be adjusted to represent the preferences of a decision making agent. Preference information about objective weights from a decision maker may be expressed imprecisely. The developed elicitation procedure provides an opportunity to obtain surrogate numerical weights for the objectives, and thus, to manage impreciseness of preference. The proposed method is a scalable to many objectives and can be used independently or as complementary to the various visualization techniques in the multidimensional case.

Keywords: Imprecise weights, Multiple objectives, Pareto optimality, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
5783 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah A. A. Aziz, Law Teik Hua

Abstract:

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.

Keywords: Composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
5782 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: Core-shell, nanostructure, semiconductor, optical property, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
5781 Development of Interaction Factors Charts for Piled Raft Foundation

Authors: Abdelazim Makki Ibrahim, Esamaldeen Ali

Abstract:

This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included.

Keywords: Finite element, pile-raft foundation, method, PLAXIS software, settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
5780 Human Body Configuration using Bayesian Model

Authors: Rui. Zhang, Yiming. Pi

Abstract:

In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.

Keywords: Bayesian framework, MCMC, model based, human body configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
5779 Investigation on Feature Extraction and Classification of Medical Images

Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..

Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
5778 Accurate Dimensional Measurement of 3D Round Holes Based on Stereo Vision

Authors: Zhiguo Ren, Lilong Cai

Abstract:

This paper present an effective method to accurately reconstruct and measure the 3D curve edges of small industrial parts based on stereo vision. To effectively fit the curve of the measured parts using a series of line segments in the images, a strategy from coarse to fine is employed based on multi-scale curve fitting. After reconstructing the 3D curve of a hole through a curved surface, its axis is adjusted so that it is parallel to the Z axis with least squares error and the dimensions of the hole can be calculated on the XY plane easily. Experimental results show that the presented method can accurately measure the dimensions of round holes through a curved surface.

Keywords: Stereo Vision, 3D Round Hole Measurement, Curve Fitting, 3D Curve Reconstruction, Least Squares Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
5777 Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method

Authors: Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Mohammed Rziza, Driss Aboutajdine

Abstract:

In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.

Keywords: Face recognition (FR), Steerable pyramid (SP), localBinary Pattern (LBP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
5776 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment

Authors: Takaaki Ishibashi

Abstract:

Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.

Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
5775 EMD-Based Signal Noise Reduction

Authors: A.O. Boudraa, J.C. Cexus, Z. Saidi

Abstract:

This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.

Keywords: Empirical mode decomposition, Signal denoisingnonstationary process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4001
5774 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun

Abstract:

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.

Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
5773 Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising

Authors: Mario Mastriani

Abstract:

We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.

Keywords: Bit-Plane, Boolean Orthonormalization Process, Denoising, Microarrays, Wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
5772 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gómez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials, but also in an effect on the mechanical performance of recycled mortars.

Keywords: Alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534
5771 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

Authors: S. Souli, Z. Lachiri

Abstract:

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.

To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
5770 High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper, we used a high-quality anodization technique to make a colored wind chime with a nano-tube structure anodic film, which controls the length-to-diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by an anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on an aluminum alloy surface. The hard anodization film has high hardness, high insulation, high-temperature resistance, good corrosion resistance, colors, and mass production properties that can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also provides in-depth research and a detailed discussion of the related process of aluminum alloy surface hard anodizing, including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization include using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte and controlling the temperature, time, current density, and final voltage to obtain the anodic film. In the results of the experiments, the properties of the anodic film, including thickness, hardness, insulation, and corrosion characteristics, the microstructure of the anode film were measured, and the hard anodization efficiency was calculated. Thereby it can obtain different transmission speeds of sound in the aluminum rod. And, different audio sounds can present on the aluminum rod. Another feature of the present experiment result is the use of the anodizing method and dyeing method, laser engraving patterning and electrophoresis method to make good-quality colored aluminum wind chimes.

Keywords: Anodization, aluminum, wind chime, nano-tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81
5769 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images

Authors: Sara A.Yones, Ahmed S. Moussa

Abstract:

Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.

Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
5768 A Normalization-based Robust Watermarking Scheme Using Zernike Moments

Authors: Say Wei Foo, Qi Dong

Abstract:

Digital watermarking has become an important technique for copyright protection but its robustness against attacks remains a major problem. In this paper, we propose a normalizationbased robust image watermarking scheme. In the proposed scheme, original host image is first normalized to a standard form. Zernike transform is then applied to the normalized image to calculate Zernike moments. Dither modulation is adopted to quantize the magnitudes of Zernike moments according to the watermark bit stream. The watermark extracting method is a blind method. Security analysis and false alarm analysis are then performed. The quality degradation of watermarked image caused by the embedded watermark is visually transparent. Experimental results show that the proposed scheme has very high robustness against various image processing operations and geometric attacks.

Keywords: Image watermarking, Image normalization, Zernike moments, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
5767 An Optimized Multi-block Method for Turbulent Flows

Authors: M. Goodarzi, P. Lashgari

Abstract:

A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.

Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
5766 Simultaneous Term Structure Estimation of Hazard and Loss Given Default with a Statistical Model using Credit Rating and Financial Information

Authors: Tomohiro Ando, Satoshi Yamashita

Abstract:

The objective of this study is to propose a statistical modeling method which enables simultaneous term structure estimation of the risk-free interest rate, hazard and loss given default, incorporating the characteristics of the bond issuing company such as credit rating and financial information. A reduced form model is used for this purpose. Statistical techniques such as spline estimation and Bayesian information criterion are employed for parameter estimation and model selection. An empirical analysis is conducted using the information on the Japanese bond market data. Results of the empirical analysis confirm the usefulness of the proposed method.

Keywords: Empirical Bayes, Hazard term structure, Loss given default.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
5765 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
5764 Fuzzy Error Recovery in Feedback Control for Three Wheel Omnidirectional Soccer Robot

Authors: Vahid Rostami, Omid sojodishijani , Saeed Ebrahimijam, Ali MohsenizanjaniNejad

Abstract:

This paper is described one of the intelligent control method in Autonomous systems, which is called fuzzy control to correct the three wheel omnidirectional robot movement while it make mistake to catch the target. Fuzzy logic is especially advantageous for problems that can not be easily represented by mathematical modeling because data is either unavailable, incomplete or the process is too complex. Such systems can be easily up grated by adding new rules to improve performance or add new features. In many cases , fuzzy control can be used to improve existing traditional controller systems by adding an extra layer of intelligence to the current control method. The fuzzy controller designed here is more accurate and flexible than the traditional controllers. The project is done at MRL middle size soccer robot team.

Keywords: Robocup , omnidirectional , fuzzy control, soccer robot , intelligent control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
5763 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Authors: S. Farzi

Abstract:

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.

Keywords: GMDH, GPNN, GA, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
5762 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: High-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
5761 Numerical Simulations of Shear Driven Square and Triangular Cavity by Using Lattice Boltzmann Scheme

Authors: A. M. Fudhail, N. A. C. Sidik, M. Z. M. Rody, H. M. Zahir, M.T. Musthafah

Abstract:

In this paper, fluid flow patterns of steady incompressible flow inside shear driven cavity are studied. The numerical simulations are conducted by using lattice Boltzmann method (LBM) for different Reynolds numbers. In order to simulate the flow, derivation of macroscopic hydrodynamics equations from the continuous Boltzmann equation need to be performed. Then, the numerical results of shear-driven flow inside square and triangular cavity are compared with results found in literature review. Present study found that flow patterns are affected by the geometry of the cavity and the Reynolds numbers used.

Keywords: Lattice Boltzmann method, shear driven cavity, square cavity, triangular cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958