Search results for: surface properties.
4341 Remarks on Some Properties of Decision Rules
Authors: Songlin Yang, Ying Ge
Abstract:
This paper shows that some properties of the decision rules in the literature do not hold by presenting a counterexample. We give sufficient and necessary conditions under which these properties are valid. These results will be helpful when one tries to choose the right decision rules in the research of rough set theory.Keywords: set, Decision table, Decision rule, coverage factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14134340 On the Oil Repellency of Nanotextured Aluminum Surface
Authors: G. Momen, R. Jafari, M. Farzaneh
Abstract:
Two different superhydrophobic surfaces were elaborated and their oil repellency behavior was evaluated using several liquid with different surface tension. A silicone rubber/SiO2 nanocomposite coated (A) on aluminum substrate by “spin-coating" and the sample B was an anodized aluminum surface covered by Teflon-like coating. A high static contact angle about ∼162° was measured for two prepared surfaces on which the water droplet rolloff. Scanning electron microscopy (SEM) showed the presence of micro/nanostructures for both sample A and B similar to that of lotus leaf. However the sample A presented significantly different behaviour of wettability against the low surface tension liquid. Sample A has been wetted totally by oil (dodecan) droplet while sample B showed oleophobic behaviour. Oleophobic property of Teflon like coating can be contributed to the presence of CF2 and CF3 functional group which was shown by XPS analysis.Keywords: Oleophobic, Superhydrophobic, Aluminum surface, Nano-texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22504339 Physical Properties and Stability of Emulsions as Affected by Native and Modified Yam Starches
Authors: Nor Hayati Ibrahim, Shamini Nair Achudan
Abstract:
This study was conducted in order to determine the physical properties and stability of mayonnaise-like emulsions as affected by modified yam starches. Native yam starch was modified via pre-gelatinization and cross-linking phosphorylation procedures. The emulsions (50% oil dispersed phase) were prepared with 0.3% native potato, native yam, pre-gelatinized yam and cross-linking phosphorylation yam starches. The droplet size of surface weighted mean diameter was found to be significantly (p < 0.05) lower in the sample with cross-linking phosphorylation yam starch as compared to other samples. Moreover, the viscosity of the sample with pregelatinized yam starch was observed to be higher than that of other samples. The phase separation stability was low in the freshly prepared and stored (45 days, 5°C) emulsions containing native yam starch. This study thus generally suggested that modified yam starches were more suitable (i.e. better physical properties and stability) to be used as stabilizers in a similar system i.e. light mayonnaises, rather than a native yam starch.
Keywords: Oil-in-water emulsions, low-fat mayonnaises, modified yam starches, droplet size distribution, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34544338 Modeling and Simulations of Surface Plasmon Waveguide Structures
Authors: Moussa Hamdan, Abdulati Abdullah
Abstract:
This paper presents an investigation of the fabrication of the optical devices in terms of their characteristics based on the use of the electromagnetic waves. Planar waveguides are used to examine the field modes (bound modes) and the parameters required for this structure. The modifications are conducted on surface plasmons based waveguides. Simple symmetric dielectric slab structure is used and analyzed in terms of transverse electric mode (TE-Mode) and transverse magnetic mode (TM-Mode. The paper presents mathematical and numerical solutions for solving simple symmetric plasmons and provides simulations of surface plasmons for field confinement. Asymmetric TM-mode calculations for dielectric surface plasmons are also provided.Keywords: Surface plasmons, optical waveguides, semiconductor lasers, refractive index, slab dialectical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16594337 Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding
Authors: K. Kalaiselvan, Naresh Subramania Warrier, S. Elavarasi
Abstract:
Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.
Keywords: Laser beam welding, titanium, aluminium, metallurgical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4464336 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase
Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia
Abstract:
Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.
Keywords: Bismuth-based superconductor, critical current density, phase formation, Sr(BO2)2 doping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7554335 The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings
Authors: Maryamossadat Bozorgtabar, Mohammadreza Rahimipour, Mehdi Salehi, Mohammadreza Jafarpour
Abstract:
Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.Keywords: APS, TiO2, Nanostructured Coating, Photoabsorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17154334 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant
Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet
Abstract:
Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.Keywords: Agricultural waste, chemical treatment, fiber characteristics, natural fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7314333 Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion
Authors: M.H. Ahmad Fadzil, Esa Prakasa, Hurriyatul Fitriyah, Hermawan Nugroho, Azura Mohd Affandi, S.H. Hussein
Abstract:
Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.
Keywords: psoriasis, roughness algorithm, polynomial surfacefitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24914332 Quality Properties of Fermented Mugworts and Rapid Pattern Analysis of Their Volatile Flavor Components by Electric Nose Based On SAW (Surface Acoustic Wave) Sensor in GC System
Authors: Hyo-Nam Song
Abstract:
The changes in quality properties and nutritional components in two fermented mugworts (Artemisia capillaries Thumberg, Artemisiaeasiaticae Nakai) were characterized followed by the rapid pattern analysis of volatile flavor compounds by Electric Nose based on SAW(Surface Acoustic Wave) sensor in GC system. There were remarkable decreases in the pH and small changes in the total soluble solids after fermentation. The L (lightness) and b (yellowness) values in Hunter's color system were shown to be decreased, whilst the a (redness) value was increased by fermentation. The HPLC analysis demonstrated that total amino acids were increased in quantity and the essential amino acids were contained higher in A. asiaticaeNakai than in A. capillaries Thumberg. While the total polyphenol contents were not affected by fermentation, the total sugar contents were dramatically decreased. Scopoletinwere highly abundant in A. capillarisThumberg, however, it was not detected in A. asiaticaeNakai. Volatile flavor compounds by Electric Nose showed that the intensity of several peaks were increased much and seven additional flavor peaks were newly produced after fermentation. The flavor differences of two mugworts were clearly distinguished from the image patterns of VaporPrintTM which indicate that the fermentation enables the two mugworts to have subtle flavor differences.
Keywords: Mugwort, Fermentation, Electric Nose, SAW sensor, Flavor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17314331 Influence of High Speed Parameters on the Quality of Machined Surface
Authors: Jana Novakova, Lenka Petrkovska, Josef Brychta, Robert Cep, Lenka Ocenasova
Abstract:
The contribution is dealing with the influence of high speed parameters on the quality of machined surface. In general the principle of high speed cutting lies in achieving faster machine times with concurrent increase in accuracy and quality of the machined areas in largely irregular, mathematically hard to define shapes. High speed machining is a highly effective method of machining with the following goals: increasing of machining productivity, increasing of quality of the machined surface, improving of machining economy, improving of ecological aspects of machining. This article is based on an experiment performed by the Department of Machining and Assembly of the Faculty of Mechanical Engineering of VŠBTechnical University of Ostrava.
Keywords: High speed cutting, measurement, surface integrity, surface roughness, residual stress/
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18094330 Magnetic Field Based Near Surface Haptic and Pointing Interface
Authors: Kasun Karunanayaka, Sanath Siriwardana, Chamari Edirisinghe, Ryohei Nakatsu, PonnampalamGopalakrishnakone
Abstract:
In this paper, we are presenting a new type of pointing interface for computers which provides mouse functionalities with near surface haptic feedback. Further, it can be configured as a haptic display where users may feel the basic geometrical shapes in the GUI by moving the finger on top of the device surface. These functionalities are achieved by tracking three dimensional positions of the neodymium magnet using Hall Effect sensors grid and generating like polarity haptic feedback using an electromagnet array. This interface brings the haptic sensations to the 3D space where previously it is felt only on top of the buttons of the haptic mouse implementations.
Keywords: Pointing interface, near surface haptic feedback, tactile display, tangible user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20724329 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel
Authors: Pankaj Chandna, Dinesh Kumar
Abstract:
The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.
Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27684328 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting
Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan
Abstract:
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.
Keywords: Electron beam melting, additive manufacturing, Ti6Al4V, surface morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7174327 Investigations Into the Turning Parameters Effect on the Surface Roughness of Flame Hardened Medium Carbon Steel with TiN-Al2O3-TiCN Coated Inserts based on Taguchi Techniques
Authors: Samir Khrais, Adel Mahammod Hassan , Amro Gazawi
Abstract:
The aim of this research is to evaluate surface roughness and develop a multiple regression model for surface roughness as a function of cutting parameters during the turning of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts. An experimental plan of work and signal-to-noise ratio (S/N) were used to relate the influence of turning parameters to the workpiece surface finish utilizing Taguchi methodology. The effects of turning parameters were studied by using the analysis of variance (ANOVA) method. Evaluated parameters were feed, cutting speed, and depth of cut. It was found that the most significant interaction among the considered turning parameters was between depth of cut and feed. The average surface roughness (Ra) resulted by TiN-Al2O3- TiCN coated inserts was about 2.44 μm and minimum value was 0.74 μm. In addition, the regression model was able to predict values for surface roughness in comparison with experimental values within reasonable limit.Keywords: Medium carbon steel, Prediction, Surface roughness, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17714326 Damping Mechanism in Welded Structures
Abstract:
Response surface methodology with Box–Benhken (BB) design of experiment approach has been utilized to study the mechanism of interface slip damping in layered and jointed tack welded beams with varying surface roughness. The design utilizes the initial amplitude of excitation, tack length and surface roughness at the interfaces to develop the model for the logarithmic damping decrement of the layered and jointed welded structures. Statistically designed experiments have been performed to estimate the coefficients in the mathematical model, predict the response, and check the adequacy of the model. Comparison of predicted and experimental response values outside the design conditions have shown good correspondence, implying that empirical model derived from response surface approach can be effectively used to describe the mechanism of interface slip damping in layered and jointed tack welded structures.
Keywords: Interface slip damping, welded joint, surface roughness, amplitude, tack length, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18294325 Creating 3D Models Using Infrared Thermography with Remotely Piloted Aerial Systems
Authors: P. van Tonder, C. C. Kruger
Abstract:
Concrete structures deteriorate over time and degradation escalates due to various factors. The rate of deterioration can be complex and unpredictable in nature. Such deteriorations may be located beneath the surface of the concrete at high elevations. This emphasizes the need for an efficient method of finding such defects to be able to assess the severity thereof. Current methods using thermography to find defects require equipment to reach higher elevations. This could become costly and time consuming not to mention the risks involved in having personnel scaffold or abseiling at such heights. Accordingly, by combining the thermal camera needed for thermography and a remotely piloted aerial system (Drone/RPAS), it could be used to alleviate some of the issues mentioned. Images can be translated into a 3D temperature model to aid concrete diagnostics and with further research can relate back to the mechanical properties of the structure but will not be dealt with in this paper. Such diagnostics includes finding delamination, similar to finding delamination on concrete decks, which resides beneath the surface of the concrete before spalling can occur. Delamination can be caused by reinforcement eroding and causing expansion beneath the concrete surface. This could lead to spalling, where concrete pieces start breaking off from the main concrete structure.
Keywords: Concrete, diagnostic, infrared thermography, 3D thermal models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084324 Secondary Ion Mass Spectrometry of Proteins
Authors: Santanu Ray, Alexander G. Shard
Abstract:
The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.
Keywords: ToF-SIMS, Spectroscopic Ellipsometry, Protein, Atomic Force Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19404323 Performance Evaluation of Conventional and Wiper Carbide Tools When Turning 6060 Aluminium Alloy: Analysis of Surface Roughness
Authors: Salah Gariani, Taher Dao, Khaled Jegandi
Abstract:
Wiper inserts are widely used nowadays, particularly in turning and milling operations, due to their unique geometric characteristics that generate superb surface finish and improve productivity. Wiper inserts can produce double the feed rate while preserving comparable surface roughness compared to that produced by conventional cutting tools. This paper reports an experimental investigation of surface quality generated in the precision dry turning of 6060 Aluminium alloy using conventional and wiper inserts at different cutting conditions. The Taguchi L9 array, Analysis of Means (AOM) and variance (ANOVA) were employed in the development of the experimental design and to optimise the process parameter identified: average surface roughness (Ra). The experimental results show that the wiper inserts substantially improved the surface quality of the machined samples by a factor of two compared to those for the conventional insert under all cutting conditions. The ANOVA and AOM analysis showed that the type of insert is the most significant factor affecting surface roughness, with a Percentage Contribution Ratio (PCR) value of 67.41%. Feed rate also significantly affected surface roughness but contributed less to its variation. No significant difference was found between values of Ra using wiper inserts under dry and wet cooling modes when turning 6060 Aluminium alloy.
Keywords: 6060 Aluminium alloy, conventional and wiper carbide tools, dry turning, average surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3204322 Effect of Cold Plasma-Surface Modification on Surface Wettability and Initial Cell Attachment
Authors: Masao Yoshinari, Jianhua Wei, Kenichi Matsuzaka, Takashi Inoue
Abstract:
A thin coating of hexamethyldisiloxane and subsequent O2-plasma treatment was performed on mirror-polished titanium in order to regulate the wide range of wettability including 106 and almost 0 degrees of contact angles. The adsorption behavior of fibronectin and albumin in both individual and competitive mode, and initial attachment of fibroblasts and osteoblasts were investigated. Individually, fibronectin adsorption showed a biphasic inclination, whereas albumin showed greater adsorption to hydrophobic surfaces. In competitive mode, in solution containing both fibronectin and albumin, fibronectin showed greater adsorption on hydrophilic surfaces, whereas Alb predominantly adsorbed on hydrophobic surfaces. Initial attachment of both cells increased with increase in surface wettability, in particular, on super-hydrophilic surface, which correlated well with fibronectin adsorption in competitive mode. These results suggest that a cold plasma-surface modification enabled to regulate the surface wettability, and fibronectin adsorption may be responsible for increasing cell adhesion on hydrophilic surfaces in a body fluidKeywords: cold plasma-surface modification, wettability, protein adsorption, initial cell attachment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24804321 Effect of Different Types of Highly Consumed Beverages on the Surface Structure of Orthodontic Restorative Material
Authors: A. Alhazza, B. Alnaser
Abstract:
Orthodontic restorative materials are widely used for the direct restoration of teeth or for cosmetic dentistry purposes. These materials have helped to solve many dental problems, providing healthy and beautiful smiles for many patients. In this study, we aimed to investigate whether the pH value has an effect on the surface structure of a nanohybrid composite material. Five different types of highly consumed beverages were selected to examine their effect on the surface structure of the nanohybrid composite material. The beverages had different pH values in the range of 3–6, i.e., they were all acidic. The material was investigated under the hardest conditions of surface exposure to the drinks by immersing the material for a long period. The specimens were examined using scanning electron microscopy (SEM) at different magnifications to investigate the effect of these beverages on the morphology of the nanohybrid composite material discs. All specimens showed an effect including pores, cracks, protrusions, and surface roughness as a result of the beverages. The degree of effect differed from one experimental group to another, but there was no relationship between the pH (acidity) value and the degree of effect on the surface structure of the specimens.
Keywords: Acidity, beverage, SEM, dentistry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5384320 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites
Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash
Abstract:
Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.Keywords: Gamma ray irradiation, Hard Ferrite, Magnetic coefficient, Radiation dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26584319 Seasonal Variations in Surface Water Quality, Samut Songkram Province, Thailand
Authors: Sivapan Choo-In, Chaisri Tharasawatpipat, Srisuwan Kaseamsawat, Tatsanawalai Utarasakul
Abstract:
The research aims to study the quality of surface water for consumer in Samut Songkram province. Water sample were collected from 217 sampling sites conclude 72 sampling sites in Amphawa, 67 sampling sites in Bangkhonthee and 65 sampling sites in Muang. Water sample were collected in December 2011 for winter, March 2012 for summer and August 2012 for rainy season. From the investigation of surface water quality in Mae Klong River, main and tributaries canals in Samut Songkram province, we found that water quality meet the type III of surface water quality standard issued by the National Environmental Quality Act B.E. 1992. Seasonal variations of pH, Temperature, nitrate, lead and cadmium have statistical differences between 3 seasons.
Keywords: Samut Songkram Province, Surface water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21204318 Experimental Investigations of a Modified Taylor-Couette Flow
Authors: A. Esmael, A. El Shrif
Abstract:
In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.
Keywords: Hydrodynamic Instability, Modified Taylor-Couette Flow, Turbulence, Taylor vortices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24664317 Polyisoprene-coated Silica/Natural Rubber Composite
Authors: Chatwarin Poochai, Puttichai Pae-on, Thirawudh Pongpayoon
Abstract:
The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.
Keywords: White tyre, admicellar polymerization, modified silica, wear resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30014316 Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields
Authors: Michael G. Danikas, Ramanujam Sarathi, Pavlos Ramnalis, Stefanos L. Nalmpantis
Abstract:
This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface daKeywords: Water droplet, polymeric surface, hydrophobicity, partial discharges, SEM, EDAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20294315 Comparison of Different Techniques to Estimate Surface Soil Moisture
Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini
Abstract:
Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.
Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21344314 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology
Authors: Weinian Wang, Joseph C. Chen
Abstract:
The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.
Keywords: Live tooling, surface roughness, Taguchi Parameter Design, CNC turning operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8044313 High Quality Colored Wind Chimes by Anodization on Aluminum Alloy
Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen
Abstract:
In this paper, we used a high-quality anodization technique to make a colored wind chime with a nano-tube structure anodic film, which controls the length-to-diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by an anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on an aluminum alloy surface. The hard anodization film has high hardness, high insulation, high-temperature resistance, good corrosion resistance, colors, and mass production properties that can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also provides in-depth research and a detailed discussion of the related process of aluminum alloy surface hard anodizing, including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization include using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte and controlling the temperature, time, current density, and final voltage to obtain the anodic film. In the results of the experiments, the properties of the anodic film, including thickness, hardness, insulation, and corrosion characteristics, the microstructure of the anode film were measured, and the hard anodization efficiency was calculated. Thereby it can obtain different transmission speeds of sound in the aluminum rod. And, different audio sounds can present on the aluminum rod. Another feature of the present experiment result is the use of the anodizing method and dyeing method, laser engraving patterning and electrophoresis method to make good-quality colored aluminum wind chimes.
Keywords: Anodization, aluminum, wind chime, nano-tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824312 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network
Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh
Abstract:
End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.Keywords: End milling, Surface roughness, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164