Search results for: meteorological forecasting
126 Predicting DHF Incidence in Northern Thailand using Time Series Analysis Technique
Authors: S. Wongkoon, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
This study aimed at developing a forecasting model on the number of Dengue Haemorrhagic Fever (DHF) incidence in Northern Thailand using time series analysis. We developed Seasonal Autoregressive Integrated Moving Average (SARIMA) models on the data collected between 2003-2006 and then validated the models using the data collected between January-September 2007. The results showed that the regressive forecast curves were consistent with the pattern of actual values. The most suitable model was the SARIMA(2,0,1)(0,2,0)12 model with a Akaike Information Criterion (AIC) of 12.2931 and a Mean Absolute Percent Error (MAPE) of 8.91713. The SARIMA(2,0,1)(0,2,0)12 model fitting was adequate for the data with the Portmanteau statistic Q20 = 8.98644 ( x20,95= 27.5871, P>0.05). This indicated that there was no significant autocorrelation between residuals at different lag times in the SARIMA(2,0,1)(0,2,0)12 model.
Keywords: Dengue, SARIMA, Time Series Analysis, Northern Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990125 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561124 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643123 Experimental Determination of Reactions of Wind-Resistant Support of Circular Stacks in Various Configurations
Authors: Debojyoti Mitra
Abstract:
Higher capacities of power plants together with increased awareness on environmental considerations have led to taller height of stacks. It is seen that strong wind can result in falling of stacks. So, aerodynamic consideration of stacks is very important in order to save the falling of stacks. One stack is not enough in industries and power sectors and two or three stacks are required for proper operation of the unit. It is very important to arrange the stacks in proper way to resist their downfall. The present experimental study concentrates on the mutual effect of three nearby stacks on each other at three different arrangements, viz. linear, side-by-side and triangular. The experiments find out the directions of resultant forces acting on the stacks in different configurations so that proper arrangement of supports can be made with respect to the wind directionality obtained from local meteorological data. One can also easily ascertain which stack is more vulnerable to wind in comparison to the others for a particular configuration. Thus, this study is important in studying the effect of wind force on three stacks in different arrangements and is very helpful in placing the supports in proper places in order to avoid failing of stack-like structures due to wind.Keywords: Stacks, relative positioning, drag and lift forces, resultant forces and supports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499122 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310121 Power Generation Potential of Dynamic Architecture
Authors: Ben Richard Hughes, Hassam Nasarullah Chaudhry
Abstract:
The main aim of this work is to establish the capabilities of new green buildings to ascertain off-grid electricity generation based on the integration of wind turbines in the conceptual model of a rotating tower [2] in Dubai. An in depth performance analysis of the WinWind 3.0MW [3] wind turbine is performed. Data based on the Dubai Meteorological Services is collected and analyzed in conjunction with the performance analysis of this wind turbine. The mathematical model is compared with Computational Fluid Dynamics (CFD) results based on a conceptual rotating tower design model. The comparison results are further validated and verified for accuracy by conducting experiments on a scaled prototype of the tower design. The study concluded that integrating wind turbines inside a rotating tower can generate enough electricity to meet the required power consumption of the building, which equates to a wind farm containing 9 horizontal axis wind turbines located at an approximate area of 3,237,485 m2 [14].Keywords: computational fluid dynamics, green building, horizontal axis wind turbine, rotating tower, velocity gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282120 External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail
Authors: Shih-Ching Lo, Yu-Ping Liao
Abstract:
Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.Keywords: forecasting, passenger volume, dynamic competitive model, social-economic variables, oil price.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586119 Long Term Variability of Temperature in Armenia in the Context of Climate Change
Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim
Abstract:
The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961- 2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5°C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.Keywords: Air temperature, long-term variability, trend, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215118 Entropy based Expeditive Methodology for Rating Curves Assessment
Authors: D. Mirauda, M. Greco, P. Moscarelli
Abstract:
The river flow forecasting represents a crucial point to employ for improving a management policy addressed to the right use of water resources as well as for conjugating prevention and defense actions against environmental degradation. The difficulties occurring during the field activities encourage the development and implementation of operative computation and measuring methods addressed to time reduction for data acquisition and processing maintaining a good level of accuracy. Therefore, the aim of the present work is to test a new entropy based expeditive methodology for the evaluation of the rating curves on three gauged sections with different geometric and morphological characteristics. The methodology requires the choice of only three verticals along the measure section and the sampling of only the maximum velocity. The results underline how in most conditions the rating curves drawn can replace those built with classic methodologies, simplifying thus the procedures of data monitoring and calculation.
Keywords: gauged station, entropic approach, expeditive methodology, rating curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411117 Stochastic Impact Analysis of COVID-19 on Karachi Stock Exchange
Authors: Syeda Maria Ali Shah, Asif Mansoor, Talat Sharafat Rehmani, Safia Mirza
Abstract:
The stock market of any country acts as a predictor of the economy. The spread of the COVID-19 pandemic has severely impacted the global financial markets. Besides, it has also critically affected the economy of Pakistan. In this study, we consider the role of the Karachi Stock Exchange (KSE) with regard to the Pakistan Stock Exchange and quantify the impact on macroeconomic variables in presence of COVID-19. The suitable macroeconomic variables are used to quantify the impact of COVID-19 by developing the stochastic model. The sufficiency of the computed model is attained by means of available techniques in the literature. The estimated equations are used to forecast the impact of pandemic on macroeconomic variables. The constructed model can help the policymakers take counteractive measures for restricting the influence of viruses on the Karachi Stock Market.
Keywords: COVID-19, Karachi Stock Market, macroeconomic variables, stochastic model, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733116 Chaos Theory and Application in Foreign Exchange Rates vs. IRR (Iranian Rial)
Authors: M. A. Torkamani, S. Mahmoodzadeh, S. Pourroostaei, C. Lucas
Abstract:
Daily production of information and importance of the sequence of produced data in forecasting future performance of market causes analysis of data behavior to become a problem of analyzing time series. But time series that are very complicated, usually are random and as a result their changes considered being unpredictable. While these series might be products of a deterministic dynamical and nonlinear process (chaotic) and as a result be predictable. Point of Chaotic theory view, complicated systems have only chaotically face and as a result they seem to be unregulated and random, but it is possible that they abide by a specified math formula. In this article, with regard to test of strange attractor and biggest Lyapunov exponent probability of chaos on several foreign exchange rates vs. IRR (Iranian Rial) has been investigated. Results show that data in this market have complex chaotic behavior with big degree of freedom.
Keywords: Chaos, Exchange Rate, Nonlinear Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477115 Granularity Analysis for Spatio-Temporal Web Sensors
Authors: Shun Hattori
Abstract:
In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882114 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: O. O. Obe, V. Balanica, E. Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.
Keywords: Neural Network, hypertension, data set, training set, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660113 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717112 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978111 A Simulated Design and Analysis of a Solar Thermal Parabolic Trough Concentrator
Authors: Fauziah Sulaiman, Nurhayati Abdullah, Balbir Singh Mahinder Singh
Abstract:
In recent years Malaysia has included renewable energy as an alternative fuel to help in diversifying the country-s energy reliance on oil, natural gas, coal and hydropower with biomass and solar energy gaining priority. The scope of this paper is to look at the designing procedures and analysis of a solar thermal parabolic trough concentrator by simulation utilizing meteorological data in several parts of Malaysia. Parameters which include the aperture area, the diameter of the receiver and the working fluid may be varied to optimize the design. Aperture area is determined by considering the width and the length of the concentrator whereas the geometric concentration ratio (CR) is obtained by considering the width and diameter of the receiver. Three types of working fluid are investigated. Theoretically, concentration ratios can be very high in the range of 10 to 40 000 depending on the optical elements used and continuous tracking of the sun. However, a thorough analysis is essential as discussed in this paper where optical precision and thermal analysis must be carried out to evaluate the performance of the parabolic trough concentrator as the theoretical CR is not the only factor that should be considered.Keywords: Parabolic trough concentrator, Concentration ratio, Intercept factor, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3981110 Implementation of the Outputs of Computer Simulation to Support Decision-Making Processes
Authors: Jiří Barta
Abstract:
At the present time, awareness, education, computer simulation and information systems protection are very serious and relevant topics. The article deals with perspectives and possibilities of implementation of emergence or natural hazard threats into the system which is developed for communication among members of crisis management staffs. The Czech Hydro-Meteorological Institute with its System of Integrated Warning Service resents the largest usable base of information. National information systems are connected to foreign systems, especially to flooding emergency systems of neighboring countries, systems of European Union and international organizations where the Czech Republic is a member. Use of outputs of particular information systems and computer simulations on a single communication interface of information system for communication among members of crisis management staff and setting the site interoperability in the net will lead to time savings in decision-making processes in solving extraordinary events and crisis situations. Faster managing of an extraordinary event or a crisis situation will bring positive effects and minimize the impact of negative effects on the environment.Keywords: Computer simulation, communication, continuity, critical infrastructure, information systems, safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719109 Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter
Authors: S. Grishin
Abstract:
This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.Keywords: Urban ecology, time-dependent mathematical model, exhaust concentration, turbulent and molecular diffusion, airflow velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411108 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, Financial returns, predictive distribution, quantile function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637107 Contribution to the Study and Optimal Exploitation of a Solar Power System for a Semi-Arid Zone (Case Study: Ferkene, Algeria)
Authors: D. Dib, W. Guebabi, M. B. Guesmi
Abstract:
The objective of this paper is a contribution to a study of power supply by solar energy system called a common Ferkène north of Algerian desert in the semi-arid area. The optimal exploitation of the system, goes through stages of study and essential design, the choice of the model of the photovoltaic panel, the study of behavior with all the parameters involved in simulation before fixing the trajectory tracking the maximum point the power to extract (MPPT), form the essential platform to shape the design of the solar system set up to supply the town Ferkène without considering the grid. The identification of the common Ferkène by the collection of geographical, meteorological, demographic and electrical provides a basis uniform and important data. The results reflect a valid fictive model for any attempt to study and design a solar system to supply an arid or semi-arid zone by electrical energy from photovoltaic panels.
Keywords: Solar power, photovoltaic panel, Boost converter, supply, design, electric power, Ferkène, Algeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752106 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198105 An Investigation into Ozone Concentration at Urban and Rural Monitoring Stations in Malaysia
Authors: Negar Banan, Mohd Talib Latif
Abstract:
This study investigated the relationship between urban and rural ozone concentrations and quantified the extent to which ambient rural conditions and the concentrations of other pollutants can be used to predict urban ozone concentrations. The study describes the variations of ozone in weekday and weekends as well as the daily maximum recorded at selected monitoring stations. The results showed that Putrajaya station had the highest concentrations of O3 on weekend due the titration of NO during the weekday. Additionally, Jerantut had the lowest average concentration with a reading value high on Wednesdays. The comparisons of average and maximum concentrations of ozone for the three stations showed that the strongest significant correlation is recorded in Jerantut station with the value R2= 0.769. Ozone concentrations originating from a neighbouring urban site form a better predictor to the urban ozone concentrations than widespread rural ozone at some levels of temporal averaging. It is found that in urban and rural of Malaysian peninsular, the concentration of ozone depends on the concentration of NOx and seasonal meteorological factors. The HYSPLIT Model (the northeast monsoon) showed that the wind direction can also influence the concentration of ozone in the atmosphere in the studied areas.Keywords: Ozone, Hysplit model, Weekend effect, Daily Average and Daily maximum, Malaysia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133104 ATM Location Problem and Cash Management in Automated Teller Machines
Authors: M. Erol Genevois, D. Celik, H. Z. Ulukan
Abstract:
Automated Teller Machines (ATMs) can be considered among one of the most important service facilities in the banking industry. The investment in ATMs and the impact on the banking industry is growing steadily in every part of the world. The banks take into consideration many factors like safety, convenience, visibility, and cost in order to determine the optimum locations of ATMs. Today, ATMs are not only available in bank branches but also at retail locations. Another important factor is the cash management in ATMs. A cash demand model for every ATM is needed in order to have an efficient cash management system. This forecasting model is based on historical cash demand data which is highly related to the ATMs location. So, the location and the cash management problem should be considered together. This paper provides a general review on studies, efforts and development in ATMs location and cash management problem.Keywords: ATM location problem, cash management problem, ATM cash replenishment problem, literature review in ATMs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5258103 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: Artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082102 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: Forecasting, ordinary differential equations, SARS-CoV-2 epidemic, SIR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558101 A Real-Time Image Change Detection System
Authors: Madina Hamiane, Amina Khunji
Abstract:
Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563100 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.
Keywords: Time series modelling, ARIMA model, River runoff, Karkheh River, CLS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79999 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87298 Fisheries Education in Karnataka: Trends, Current Status, Performance and Prospects
Authors: A. Vinay, Mary Josephine, Shreesha. S. Rao, Dhande Kranthi Kumar, J. Nandini
Abstract:
This paper looks at the development of Fisheries education in Karnataka and the supply of skilled human capital to the sector. The study tries to analyse their job occupancy patterns, Compound Growth Rate (CGR) and forecasts the fisheries graduates supply using the Holt method. In Karnataka, fisheries are one of the neglected allied sectors of agriculture in spite of having enormous scope and potential to contribute to the State's agriculture GDP. The State Government has been negligent in absorbing skilled human capital for the development of fisheries, as there are so many vacant positions in both education institutes, as well as the State fisheries department. CGR and forecasting of fisheries graduates shows a positive growth rate and increasing trend, from which we can understand that by proper utilization of skilled human capital can bring development in the fisheries sector of Karnataka.Keywords: Compound growth rate, fisheries education, Holt method, skilled human capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147297 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction
Authors: Ε. Giovanis
Abstract:
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420