Search results for: Persian font recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 889

Search results for: Persian font recognition

679 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220
678 Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran

Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani

Abstract:

Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.

Keywords: Hemodialysis patients, duration of hemodialysis, memory types, Zahedan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
677 Robust Face Recognition Using Eigen Faces and Karhunen-Loeve Algorithm

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Prateek Gupta

Abstract:

The current research paper is an implementation of Eigen Faces and Karhunen-Loeve Algorithm for face recognition. The designed program works in a manner where a unique identification number is given to each face under trial. These faces are kept in a database from where any particular face can be matched and found out of the available test faces. The Karhunen –Loeve Algorithm has been implemented to find out the appropriate right face (with same features) with respect to given input image as test data image having unique identification number. The procedure involves usage of Eigen faces for the recognition of faces.

Keywords: Eigen Faces, Karhunen-Loeve Algorithm, FaceRecognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
676 Face Texture Reconstruction for Illumination Variant Face Recognition

Authors: Pengfei Xiong, Lei Huang, Changping Liu

Abstract:

In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.

Keywords: texture reconstruction, illumination, face recognition, subspaces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
675 A Human Activity Recognition System Based On Sensory Data Related to Object Usage

Authors: M. Abdullah-Al-Wadud

Abstract:

Sensor-based Activity Recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.

Keywords: Naïve Bayesian-based classification, Activity recognition, sensor data, object-usage model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
674 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours

Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic

Abstract:

Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.

Keywords: player number, soccer video, HSV color space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
673 A Robust Eyelashes and Eyelid Detection in Transformation Invariant Iris Recognition: In Application with LRC Security System

Authors: R. Bremananth

Abstract:

Biometric authentication is an essential task for any kind of real-life applications. In this paper, we contribute two primary paradigms to Iris recognition such as Robust Eyelash Detection (RED) using pathway kernels and hair curve fitting synthesized model. Based on these two paradigms, rotation invariant iris recognition is enhanced. In addition, the presented framework is tested with real-life iris data to provide the authentication for LRC (Learning Resource Center) users. Recognition performance is significantly improved based on the contributed schemes by evaluating real-life irises. Furthermore, the framework has been implemented using Java programming language. Experiments are performed based on 1250 diverse subjects in different angles of variations on the authentication process. The results revealed that the methodology can deploy in the process on LRC management system and other security required applications.

Keywords: Authentication, biometric, eye lashes detection, iris scanning, LRC security, secure access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
672 The Contribution of Translation to Arabic and Islamic Civilization during the Golden Age: 661-1258

Authors: Smail Hadj Mahammed

Abstract:

Translation is not merely a process of conveying the meaning from one particular language into another to overcome language barriers and ensure a good understanding; it is also a work of civilization and progress. Without the translation of Greek, Indian and Persian works, Arabic and Islamic Civilization would not have taken off, and without the translations of Arabic works into Latin, and then into European languages, the scientific and technological revolution of the modern world would not have taken place. In this context, the present paper seeks to investigate how the translation movement contributed to the Arabic and Islamic Civilizations during the Golden Age. The paper consists of three major parts: the first part provides a brief historical overview of the translation movement during the golden age, which witnessed two important eras: the Umayyad and Abbasid eras. The second part shows the main reasons why translation was a prominent cultural activity during the Golden Age and why it gained great interest from the Arabs. The last part highlights the constructive contribution of translation to the Arabic and Islamic Civilization during the period (661–1258). The results demonstrate that Arabic translation movement during the Golden Age had significantly assisted in enriching the Arabic and Islamic civilizations considering the major and important scientific works of old Greek, Indian and Persian civilizations which had been absorbed.

Keywords: Arabic and Islamic civilization, contribution, golden age, translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230
671 Printed Arabic Sub-Word Recognition Using Moments

Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh

Abstract:

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
670 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
669 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
668 Automatic Recognition of an Unknown and Time-Varying Number of Simultaneous Environmental Sound Sources

Authors: S. Ntalampiras, I. Potamitis, N. Fakotakis, S. Kouzoupis

Abstract:

The present work faces the problem of automatic enumeration and recognition of an unknown and time-varying number of environmental sound sources while using a single microphone. The assumption that is made is that the sound recorded is a realization of sound sources belonging to a group of audio classes which is known a-priori. We describe two variations of the same principle which is to calculate the distance between the current unknown audio frame and all possible combinations of the classes that are assumed to span the soundscene. We concentrate on categorizing environmental sound sources, such as birds, insects etc. in the task of monitoring the biodiversity of a specific habitat.

Keywords: automatic recognition of multiple sound sources, enumeration of sound sources, computational ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
667 Patronage Network and Ideological Manipulations in Translation of Literary Texts: A Case Study of George Orwell's “1984” in Persian Translation in the Period 1980 to 2015

Authors: Masoud Hassanzade Novin, Bahloul Salmani

Abstract:

The process of the translation is not merely the linguistic aspects. It is also considered in the cultural framework of both the source and target text cultures. The translation process and translated texts are confronted the new aspect in 20th century which is considered mostly in the patronage framework and ideological grillwork of the target language. To have these factors scrutinized in the process of the translation both micro-element factors and macro-element factors can be taken into consideration. For the purpose of this study through a qualitative type of research based on critical discourse analysis approach, the case study of the novel “1984” written by George Orwell was chosen as the corpus of the study to have the contrastive analysis by its Persian translated texts. Results of the study revealed some distortions embedded in the target texts which were overshadowed by ideological aspect and patronage network. The outcomes of the manipulated terms were different in various categories which revealed the manipulation aspects in the texts translated.

Keywords: Critical discourse analysis, ideology, translated texts, patronage network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
666 Gender Differences in Spatial Navigation

Authors: Bia Kim, Sewon Lee, Jaesik Lee

Abstract:

This study aims to investigate the gender differences in spatial navigation using the tasks of 2-D matrix navigation and recognition of real driving scene. The results can be summarized as followings. First, female subjects responded faster in 2-D matrix navigation task than male subjects when landmark instructions were provided. Second, in recognition task, male subjects recognized the key elements involved in the past driving scene more accurately than female subjects. In particular, female subjects tended to miss peripheral information. These results suggest the possibility of gender differences in spatial navigation.

Keywords: Gender differences, Spatial navigation, 2-D matrixnavigation, Recognition of driving scene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
665 Parametric Primitives for Hand Gesture Recognition

Authors: Sanmohan Krüger, Volker Krüger

Abstract:

Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.

Keywords: Parametric actions, Action primitives, Hand gesture recognition, Imitation learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
664 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.

This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.

Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.

In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.

The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
663 Extended Set of DCT-TPLBP and DCT-FPLBP for Face Recognition

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we describe an application for face recognition. Many studies have used local descriptors to characterize a face, the performance of these local descriptors remain low by global descriptors (working on the entire image). The application of local descriptors (cutting image into blocks) must be able to store both the advantages of global and local methods in the Discrete Cosine Transform (DCT) domain. This system uses neural network techniques. The letter method provides a good compromise between the two approaches in terms of simplifying of calculation and classifying performance. Finally, we compare our results with those obtained from other local and global conventional approaches.

Keywords: Face detection, face recognition, discrete cosine transform (DCT), FPLBP, TPLBP, NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
662 Component-based Segmentation of Words from Handwritten Arabic Text

Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson

Abstract:

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.

Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
661 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching

Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari

Abstract:

Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).

Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
660 Interactive Shadow Play Animation System

Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding

Abstract:

The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.

Keywords: Gesture recognition, Kinect, shadow play animation, VRPN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703
659 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition

Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar

Abstract:

Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data set

Keywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
658 Comparison of MFCC and Cepstral Coefficients as a Feature Set for PCG Biometric Systems

Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Muhammad Kamil Abdullah, Nurul Nadia Ahmad, RosliBesar

Abstract:

Heart sound is an acoustic signal and many techniques used nowadays for human recognition tasks borrow speech recognition techniques. One popular choice for feature extraction of accoustic signals is the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear Mel-Scale that mimics the human hearing. However the Mel-Scale is almost linear in the frequency region of heart sounds and thus should produce similar results with the standard cepstral coefficients (CC). In this paper, MFCC is investigated to see if it produces superior results for PCG based human identification system compared to CC. Results show that the MFCC system is still superior to CC despite linear filter-banks in the lower frequency range, giving up to 95% correct recognition rate for MFCC and 90% for CC. Further experiments show that the high recognition rate is due to the implementation of filter-banks and not from Mel-Scaling.

Keywords: Biometric, Phonocardiogram, Cepstral Coefficients, Mel Frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552
657 ADABeV: Automatic Detection of Abnormal Behavior in Video-surveillance

Authors: Nour Charara, Iman Jarkass, Maria Sokhn, Elena Mugellini, Omar Abou Khaled

Abstract:

Intelligent Video-Surveillance (IVS) systems are being more and more popular in security applications. The analysis and recognition of abnormal behaviours in a video sequence has gradually drawn the attention in the field of IVS, since it allows filtering out a large number of useless information, which guarantees the high efficiency in the security protection, and save a lot of human and material resources. We present in this paper ADABeV, an intelligent video-surveillance framework for event recognition in crowded scene to detect the abnormal human behaviour. This framework is attended to be able to achieve real-time alarming, reducing the lags in traditional monitoring systems. This architecture proposal addresses four main challenges: behaviour understanding in crowded scenes, hard lighting conditions, multiple input kinds of sensors and contextual-based adaptability to recognize the active context of the scene.

Keywords: Behavior recognition, Crowded scene, Data fusion, Pattern recognition, Video-surveillance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3634
656 Object Recognition in Color Images by the Self Configuring System MEMORI

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a self configuring and highly user-friendly tool.

Keywords: Automatic Object Recognition, Clustering, Contentbased Image Retrieval System, Image Segmentation, Region Adjacency Graph, Region Grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
655 Learning to Recognize Faces by Local Feature Design and Selection

Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu

Abstract:

Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.

Keywords: Face recognition, local feature, AdaBoost, subspace analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
654 Prevention of Corruption in Public Purchases

Authors: Anatoly Krivinsh

Abstract:

The results of dissertation research "Preventing and  combating corruption in public procurement" are presented in this  publication. The study was conducted 2011 till 2013 in a Member  State of the European Union– in the Republic of Latvia.  Goal of the thesis is to explore corruption prevention and  combating issues in public procurement sphere, to identify the  prevalence rates, determinants and contributing factors and  prevention opportunities in Latvia.  In the first chapter the author analyzes theoretical aspects of  understanding corruption in public procurement, with particular  emphasis on corruption definition problem, its nature, causes and  consequences. A separate section is dedicated to the public  procurement concept, mechanism and legal framework. In the first  part of this work the author presents cognitive methodology of  corruption in public procurement field, based on which the author has  carried out an analysis of corruption situation in public procurement  in Republic of Latvia.  In the second chapter of the thesis, the author analyzes the  problem of corruption in public procurement, including its historical  aspects, typology and classification of corruption subjects involved,  corruption risk elements in public procurement and their  identification. During the development of the second chapter author's  practical experience in public procurements was widely used.  The third and fourth chapter deals with issues related to the  prevention and combating corruption in public procurement, namely  the operation of the concept, principles, methods and techniques,  subjects in Republic of Latvia, as well as an analysis of foreign  experience in preventing and combating corruption. The fifth chapter  is devoted to the corruption prevention and combating perspectives  and their assessment. In this chapter the author has made the  evaluation of corruption prevention and combating measures  efficiency in Republic of Latvia, assessment of anti-corruption  legislation development stage in public procurement field in Latvia. 

Keywords: Prevention of corruption, public purchases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
653 Dynamic Threshold Adjustment Approach For Neural Networks

Authors: Hamza A. Ali, Waleed A. J. Rasheed

Abstract:

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.

Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
652 View-Point Insensitive Human Pose Recognition using Neural Network

Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung

Abstract:

This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.

Keywords: Computer vision, neural network, pose recognition, view-point insensitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
651 Pre-Analysis of Printed Circuit Boards Based On Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show, that a higher contrast is achieved in the near infrared compared to ultraviolett and visible light.

Keywords: Electronic Waste, Recycling, Multispectral Imaging, Printed Circuit Boards, Rare-Earth Elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
650 Hand Gesture Recognition Based on Combined Features Extraction

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.

Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032